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PREFACE 

 

Differential calculus is a foundational branch of mathematics with far-reaching implications 

in various fields, including physics, engineering, economics, and computer science. It serves 

as a fundamental tool for understanding rates of change, optimization, and the behaviour of 

functions. 

 

This book is designed to be a comprehensive resource for students, educators, and anyone 

interested in mastering the principles and applications of differential calculus. This book aims 

to provide a clear and structured approach to learning differential calculus, starting from the 

basics and gradually progressing to advanced topics. Whether you're a novice seeking an 

introduction to calculus or a seasoned mathematician looking to deepen your understanding, 

this book offers something for everyone. 
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CHAPTER - 1 

Numbers and functions 

 

Learning Objectives: 

 Differentiate between types of numbers (natural, whole, integers, rational, irrational, real 

and complex). 

 Identify key features of functions (domain, range) from different representations. 

 Recognize common function types (linear, quadratic, exponential, logarithmic, 

trigonometric) 

 

Structure: 

1.1 Numbers Introduction 

1.2 Functions 

1.3 Summary 

1.4 Keywords 

1.5 Self-Assessment Questions 

1.6 Case Study 

1.7 References 

 

We use numbers in our day to day life. They are often called numerals. Without numbers, we 

cannot do counting of things, date, time, money, etc. Sometimes these numbers are used for 

measurement and sometimes they are used for labelling. The properties of numbers make 

them capable of performing arithmetic operations on them.  These numbers are expressed in 

numeric forms and also in words. For example, 2 is written as two in words, 25 is written as 

twenty-five in words, etc. Students can practice writing the numbers from 1 to 100 in words 

to learn more. 

There are different types of numbers in Maths, which we learn. They are natural and whole 

numbers, odd and even numbers, rational and irrational numbers, etc. We will discuss all the 

types here in this article. Apart from these, the numbers are used in various applications such 

as forming number series, maths tables, etc. 

 

 

https://byjus.com/maths/arithmetic-operations/
https://byjus.com/maths/irrational-numbers/
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1.1 Numbers Introduction 

A number is an arithmetic value used for representing the quantity and used in making 

calculations. A written symbol like “3” which represents a number is known as numerals. 

A number system is a writing system for denoting numbers using digits or symbols in a 

logical manner. The numeral system: 

 Represents a useful set of numbers 

 Reflects the arithmetic and algebraic structure of a number 

 Provides standard representation 

We use the digits from 0 to 9 to form all other numbers.  

0 1 2 3 4 5 6 7 8 9 

 

With the help of these digits, we can create infinite numbers. 

For example, 12, 3456, 1298, etc. 

 

Counting Numbers: 

We use numbers to count different things or objects such as 1, 2, 3, 4, etc. Humans have been 

using numbers to count things from the past thousands of years. For example, there are 7 

cows in the field. The counting numbers start from 1 and it goes till infinity. 

 

The Number Zero: 

The position of the number “Zero (0)” plays an important role in Mathematics and it is used 

as a placeholder in the place value number system. The number 0, acts as an additive identity 

for the real numbers, and other algebraic structures. We use the number “0” to show nothing. 

For example, there were 3 apples, but now there are none. To represent nothing, we can use 

zero. 

 

Types of Numbers 

The numbers can be classified into sets known as the number system. The different types of 

numbers in maths are: 

 Natural Numbers: Natural numbers are known as counting numbers that contain the 

positive integers from 1 to infinity. The set of natural numbers is denoted as “N” and it 

includes N = {1, 2, 3, 4, 5, ……….} 

https://byjus.com/maths/number-system/
https://byjus.com/maths/types-of-numbers/
https://byjus.com/maths/types-of-numbers/
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 Whole Numbers: Whole numbers are known as non-negative integers and it does not 

include any fractional or decimal part. It is denoted as “W” and the set of whole numbers 

includes W = {0, 1, 2, 3, 4, 5, ……….} 

 Integers: Integers are the set of all whole numbers but it includes a negative set of natural 

numbers also. “Z” represents integers and the set of integers are Z = { -3, -2, -1, 0, 1, 2, 3} 

 Rational Numbers: Any number that can be written as a ratio of one number over another 

number is written as rational numbers. This means that any number that can be written in 

the form of p/q. The symbol “Q” represents the rational number. 

 Irrational Numbers: The number that cannot be expressed as the ratio of one over 

another is known as irrational numbers and it is represented by the symbol “P” 

 Real Numbers: All the positive and negative integers, fractional and decimal numbers 

without imaginary numbers are called real numbers. It is represented by the symbol “R”. 

 Complex Numbers: The number that can be written in the form of 𝑎 + 𝑏𝑖, where “a and 

b” are the real number and “𝑖” is an imaginary number, are known as complex numbers 

“C”. 

 Imaginary Numbers: The imaginary numbers are the complex numbers that can be 

written in the form of the product of a real number and the imaginary unit “i”. 

 

Apart from the above, there exist other numbers namely even and odd numbers, prime 

numbers and composite numbers. These can be defined as given below: 

Even Numbers: The numbers which are exactly divisible by 2, are called even numbers. 

These can be positive or negative integers such as -42, -36, -12, 2, 4, 8 and so on. 

Odd Numbers: The numbers which are not exactly divisible by 2, are called odd numbers. 

These can be both positive and negative integers such as -3, -15, 7, 9, 17, 25 and so on. 

Prime Numbers: Prime numbers are the numbers that have two factors only i.e., 1 and the 

number itself. In other words, the number which is divided by 1 and the number itself is 

called prime numbers. For example 2, 3, 5, 7, 11 etc. 

Composite Numbers: A composite number is a number that has more than two factors. For 

example, 4 is a composite number, as the number 4 is divisible by 1, 2, and 4. Other 

examples of composite numbers are 6, 8, 9, 10, and so on. 

Note: The number “1” is neither prime nor composite. 

 

 

https://byjus.com/maths/even-and-odd-numbers/


4 

 

Numbers Chart: The number chart represents Real and Complex numbers (Fig. 1.1.1) 

 

 

Figure 1.1.1: Number Chart 

Number Series 

In mathematics, the number series consists of a series of numbers in which the next term is 

obtained by adding or subtracting the constant term to the previous term. For example, 

consider the series 1, 3, 5, 7, 9, … In this series, the next term is obtained by adding the 

constant term “2” to the previous term. There are different types of number series namely, 

 Perfect Square series 

 Two-stage type series 

 The odd man out series 

 Perfect cube series 

 Geometric series 

 Mixed series 

 

Special Numbers 

Cardinal Numbers: Cardinal number defines how many of something are there in a list, 

such as one, five, ten, etc. 

Ordinal Numbers: Ordinal numbers explain the position of something in a list, such as first, 

second, third, fourth, and so on. 

Nominal Numbers: Nominal number is used only as a name. It does not denote an actual 

value or the position of something. 

Pi (π): Pi is a special number, which is approximately equal to 3.14159. Pi (π) is defined as 

the ratio of the circumference of the circle divided by the diameter of the circle. 

(i.e.,) Circumference/ Diameter = π = 3.14159. 
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Euler’s Number: Euler‟s number is one of the important numbers in Maths, and it is 

approximately equal to 2.7182818. It is an irrational number and it is the base of the natural 

logarithm. 

Golden Ratio: A golden ratio is a special number and it is approximately equal to 1.618. It is 

an irrational number and the digits do not follow any pattern. 

 

Properties of Numbers 

The properties of numbers are basically stated for real numbers. The common properties are: 

Commutative Property: If a and b are two real numbers, then according to commutative 

property; 

a+b = b+a 

a.b = b.a 

Example: 2+3 = 3+2 

and 2 × 3 = 3 × 2 

 

Associative Property: If a, b and c are three real numbers, then according to associative 

property; 

(a+b)+c = a+(b+c) 

(a.b).c = a.(b.c) 

Example: (1+2) +3 = 1+ (2+3) 

(1.2).3 = 1.(2.3) 

 

Distributive Property: If a, b and c are three real numbers, then according to distributive 

property; 

a×(b + c) = a×b + a×c 

Example: 2 × (3 + 4) = 2×3 + 2×4 

2 × 7 = 6 + 8 

14 = 14 

 

Closure Property: If a number is added to another number, then the outcome will be a 

number only, such as; 

a+b = c; where a, b and c are three real numbers. 

Example: 1+2 = 3 
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Identity Property: If we add zero to a number or multiply by 1, the number will remain 

unchanged. 

a+0=a 

a.1 =a 

Example: 5+0 = 5 and 5 x 1 = 5 

Additive Inverse: If a number is added to its own negative number, then the result is zero. 

a+(-a) = 0 

Example: 3+(-3) = 3-3 = 0 

 

Multiplicative Inverse: If a number apart from 0, is multiplied to its own reciprocal then the 

result is 1. 

a × (1/a) = 1 

Example: 23 × (1/23) = 1 

 

Zero Product Property: If a.b = 0, then; either a = 0 or b = 0. 

Example: 7 × 0 = 0 or 0 × 6 = 6 

 

Reflexive Property: This property reflects the number itself. 

a = a 

Example: 9 = 9 

 

The properties which are explained above can vary based on the different types of numbers.  

Solved Problems: 

Example 1.1.1:  

Prove the associative property of addition and multiplication. 

Solution: 

We know that the associative property of addition and multiplication are: 

(a+b)+c = a+(b+c) 

(a.b).c = a.(b.c) 

Now, assume that a = 2, b = 4 and c = 5 

Proving associative property of addition: 

Now, substitute the values in the property 

(2+4)+5 = 2+(4+5) 

6+5 = 2+9 
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11 = 11 

L.H.S = R.H.S 

Hence, (a+b)+c = a+(b+c) is proved. 

Proving associative property of multiplication: 

(2.4).5 = 2.(4.5) 

(8).5 = 2.(20) 

40 = 40 

L.H.S = R.H.S 

Hence, (a.b).c = a.(b.c) is proved. 

 

Example 1.1.2:  

Solve the given algebraic expression 4.(3+2) using the distributive property 

Solution: 

We know that the distributive property is a × (b + c) = (a×b) + (a×c) 

Now, take a= 4, b= 3 and c= 2 

Now, substituting values, we get 

4.(3+2) =  (a×b) + (a×c) 

= (4×3) + (4×2) 

= 12+8 

= 20 

Hence, 4.(3+2) is 20. 

 

1.2 Functions 

The relationship between the particle location and time, the relationship between a point on 

the x- and y-axes, and several other similar relationships are investigated in-depth in the 

name function. 

Assume that a particle is travelling across space. The physical particle is taken to be a point. 

The particle's location fluctuates with time. From a mathematical perspective, the point is 

always located in the three-dimensional space R
3
. Let time ranges from 0 to 1, then the 

particle's function or movement determines its position at any given time t, which ranges 

from 0 to 1. Stated differently, the functioning of the particle yields a point in R
3
 for each t ∈ 

[0, 1]. Let f(t) represent the particle's location at time t. 

Here's another simple illustration. We are aware that a straight line is described by the 

equation 2x - y = 0. In this case, y takes on a value in accordance with whatever x assumes. 



8 

 

The way that x moves or functions determines how y moves. Let y be represented by f(x). 

Such situations are common in nature. It is evident that when studying natural events, one 

must take into account how one quantity varies in relation to another. 

The relationship between the particle location and time, between a point on the x- and y-axes, 

and several other similar relationships are investigated in-depth in the name function. The 

definition of a function prior to Cantor is a rule that links one variable to another. A function 

is defined as a rule that associates a unique element in set B with each element in set A with 

the emergence of the idea of sets. Nevertheless, rule and association are not mathematical 

notions with precise definitions. Every word used in modern mathematics needs to be defined 

correctly. Thus, relations are used to provide a definition of function. 

Let's say we intend to talk about an exam that a group of students wrote. We will consider 

this to be related. Let A represent the group of students who took the exam, and let B = {0, 1, 

2, 3,... 100} represent the range of potential scores. A relation R is defined as follows: 

A student a is related to a mark b if a got b marks in the test. When a student receives b 

marks on an exam, they are associated with a mark b. Each student achieved a grade. Put 

differently, for any a ∈ A, there exists an element b ∈ B such that (a, b) ∈ R. 

In any test, a student cannot receive two distinct scores. Put differently, there exists a single b 

∈ B such that (a, b) ∈ R for each a ∈ A. Another way to put this is thus: b = c if (a, b), (a, c) ∈ 

R. A significant class of relations known as functions is made up of relations with the two 

above mentioned characteristics. 

Finally, let us have a precise specification of a function using relations. 

Definition 1.2.1 

Let A and B be two sets. A relation f from A to B, a subset of A×B, is called a function from 

A to B if it satisfies the following 

(i) For all a ∈ A, there is an element b∈ B such that (a, b) ∈ f. 

(ii) If (a, b) ∈ ƒ and (a, c) ∈ ƒ then b = c. 

Put another way, a function is a relation where every element in the domain is mapped to a 

single element in the range exclusively. 

The terms "domain" and "co-domain" refer to A and B, respectively, of f. When (a, b) is in f, 

we express f(a) = b; this indicates that element „a‟ is a pre-image of „b‟ element „b‟ is the 

image of „a‟ and f(a) is the value of f at „a‟. The function's range is the set  

{b: (a, b) ∈ f for some a ∈ A}.  
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It is said that the function is real-value if B is a subset of R. If the domains of two functions, f 

and g, are the same and f(a) = g(a) for every „a‟ in the domain, then the two functions are 

considered equivalent. We write f: A → B if f is a function with domains A and B. (Read this 

as f being a function from A to B or as f being from A to B). The term "f maps A into B" is 

sometimes used. We say that f maps a to b or that f maps a onto b if f(a) = b, and so on. 

The set of all co-domain elements with pre-images is referred to as a function range. It is 

obvious that a function's range is a portion of its co-domain. The domain of a relation R from 

a set A to a set B is defined as the set of all members of A having images, not as A, because 

the first condition further stipulates that each element in the domain must have an image. An 

element in the domain cannot have two or more photos, according to the second requirement. 

Although a relation does not always imply a function, we see that every function is a relation. 

Let f = {(a, 1), (b, 2), (c, 2), (d, 4)} be a function. This function goes from {{a, b}, {c}, {d}} 

to {1, 2, 4}. Since e has no image, this function from {a, b, c, d, e} to {1, 2, 3, 4} cannot 

exist. Since the image of d is not in the co-domain and f is not a subset of {a, b, c, d}×{1, 2, 

3, 5}, this function from {a, b, c, d} to {1, 2, 3, 5} is not defined. 

 

1. Way of Representing Functions 

(a) Tabular Representation of a Function 

When the members of the domain are listed like x1, x2, x3, . . . xn, we can use this tabular form. 

Here, the values of the arguments x1, x2, x3, . . . xn and the corresponding values of the 

function y1, y2, y3 . . . yn are written in a definite order. 

 

(b) Graphical Representation of a Function 

A graph with  x-axis for the domain and  y-axis for the co-domain in the (x, y)-plane may be 

used to depict numerous functions when the domain and the co-domain are subsets of R. 

 

              

                            Figure: 1.2.1: Graphical Representation of a Function 

                  Mapping                Table                                Graph 
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(c) Analytical Representation of a Function 

We say that the function y of x is represented or defined analytically if the function y = f(x) is 

such that f denotes an analytical phrase. Several instances of analytical phrases include 

 

Illustrations of functions define are 

 

Now recall the domain of the function which are analytical in nature described as 

 

Piece- wise defined functions , considering the function f(x) defined as 

    

 

We can create the function's graph if it is defined from R or a subset of R. For instance, we 

may display the points (x, x/2 + 1) for all ∈ [0, 4] if f: [0, 4] → R is defined by f(x) = x/2 + 1. 

After that, a straight line segment connecting (0, 1) and (4, 3) will appear. Refer to figure 1.2. 

 

 

Figure 1.2.2: Straight line segment  

Other example of function f(x) = x2 + 4, x ≥ 0. The mapping will be specified by its graph  

          Figure: 1.2.3: Mapping of  f(x) = x2 + 4, x ≥ 0 
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A point in the domain is denoted by x. Now let us draw a line across point x that is vertical. 

At P, let it intersect the curve. f(x) is the place where the y-axis and the horizontal line drawn 

via P meet. In a similar manner, we may determine the pre-images of y by drawing horizontal 

lines across a point y in the co domain. 

 

Is it possible to define a curve on a plane as a function that maps a subset of R to R? No, we 

are unable to. To determine this, there is a straightforward test. 

 

Vertical Line Test 

As we previously said, the y-coordinate of each point x in the domain is equal to f(x), where 

the vertical line across the point intersects the curve at that point. We will obtain many values 

for f(x) for a single x if the vertical line passing through a point x in the domain encounters 

the curve more than once. This isn't appropriate for a function. Furthermore, there won't be an 

image for x if the vertical line through a point x in the domain doesn't match the curve; this 

can't happen in a function either. Thus, we may state,  

“if the vertical line through a point x in the domain meets the curve at more than one point or 

does not meet the curve, then the curve will not represent a function”. 

 

Figure 1.2.4 Arch depict 

 

Figure 1.2.5 Arch depict 

 

Figure 1.2.6 Arch depict 
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Figure 1.2.7 Arch depict 

 

The Arch depict in Figure 1.2.4 does not symbolize a map from [0, 4] to R due to a vertical 

line meets the curve at greater than one point Figure 1.2.5. The graph shows in Figure 1.2.6 

does not signify a function from [0, 4] to R due to a vertical line drawn through x = 

2.5 in [0, 4] does not convene the graph Figure 1.2.7. 

 

2. Various Elementary mapping  

A few commonly used mapping have names attached to them. Let's enumerate a few of them. 

 

(i) Let X be any non-empty set. The function f : X → X described by f(x) = x for each x ∈ X is 

identified the identity mapping on X (See Figure 1.2.4). It is represented by IX or I. 

 

Figure 1.2.8 Mapping  

 

 

Figure 1.2.9 Mapping  

(ii) Two sets, X and Y, are given. Assume that c is a fixed element in Y. A constant function 

is the mapping f: X → Y defined by f(x) = c for every x ∈ X (See Figure 1.2.9). 
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Figure 1.2.10 Constant Function 

The value of a invariable mapping is same for all values of x throughout the domain. 

 

 

Figure 1.2.11: Identity function 

 

Figure 1.2.12: Identity function 

 

The graphs of the identity function and a constant function are shown in Figures 1.2.11 and 

1.2.12 if X and Y are both R. The zero function is the constant function defined by f(x) = 0 

for every x, if X is any set. Thus, a specific instance of a constant function is the zero 

function.   
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Now for f(x) = |x| 

 

 

 

 

 

 

(iii) The map f : R → R defined by f(x) = |x|, where |x| is the modulus or absolute value of x, 

is called the modulus mapping or absolute value function. Figure 1.2.13 & Figure 1.2.14 

 

Figure 1.2.13: Modulus Mapping 

 

 

Figure 1.2.14: Modulus Mapping 

 

3. Types of Functions 

While there are many other forms of functions depending on the situation, we will focus on 

two fundamental categories: onto functions and one-to-one functions. 
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Figure 1.2.15 One-to-one functions 

 

 

Figure 1.2.16 One-to-one functions 

 

 

Figure 1.2.17 One-to-one functions 

Let's examine the two straightforward functions shown in Figures 1.2.15 and 1.2.17. While 

this is not the case in Figure 1.2.16, two domain items, b and c, are mapped onto the same 

element, y, in the first function. One-to-one functions include those such as the second one. 

Examining the two functions displayed in Figures 1.2.16 and 1.2.17 is our next task. The 

element z in the co-domain does not have a pre-image in Figure 1.2.16, but it does in Figure 

1.2.17. Examples of onto functions are the functions shown in Figure 1.2.17. We now define 

onto and one-to-one functions. 

Definition 1.2.2 

A function ƒ A → B is said to be one-to-one if x, y A, x≠yf(x) ≠f(y) [or equivalently f(x) 

= f(y) ⇒ x=y]. A function f: A → B is said to be onto, if for each b B there exists at least 

one element a  A such that f(a) = b. That is, the range of ƒ is B. 



16 

 

An onto function is a surjective function, while an injective function is another term for a 

one-to-one function. If a function f: A → B is both onto and one-to-one, it is referred to as 

bijective.  

In order to demonstrate that a function f: A → B is one-to-one, one just has to demonstrate 

one of the following:  

If x
-1 

y, then f(x)
-1f

(y), or equally if f(x) = f(y), then x = y. 

 

Example 1.2.1: Check whether the following functions are one-to-one and onto. 

i. 𝑓: 𝑁 → 𝑁 defined by 𝑓(𝑛) = 𝑛 + 2. 

ii. 𝑓: 𝑁 ∪  −1, 0 → 𝑁 defined by 𝑓(𝑛) = 𝑛 + 2. 

 

Solution: 

i. If 𝑓(𝑛) = 𝑓(𝑚), then 𝑛 + 2 = 𝑚 + 2 and hence m=n. Thus f is one –to-one. As 1 has no 

pre-image, this function is not onto. 

ii. As above, this function is one-to-one, If m is in the co-domain, then 𝑚 − 2 is in the 

domain and 𝑓(𝑚 − 2) = (𝑚 − 2) + 2 = 𝑚; thus m has a pre-image and hence this 

function is onto. 

 

Figure 1.2.18 Mappings 

 

1.3 Summary 

Functions are fundamental concepts in mathematics and computer science. In mathematics, a 

function is a relation between a set of inputs and a set of possible outputs, with the property 

that each input is related to exactly one output. 

 

1.4 Keywords 

 Numbers 

 Types of Numbers 

 Number Series 
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 Functions 

 Types of Functions 

 Operations on Functions 

 

1.5 Self – Assessment Questions 

1. What is a mapping? 

2. How is a mapping different from a function? 

3. What are the components of a mapping? 

4. Can mappings have multiple outputs for a single input? 

5. What is the inverse of a mapping? 

6. What is the domain and range of a mapping? 

7. How do you represent a mapping graphically? 

8. What is the difference between a one-to-one mapping and an onto mapping? 

9. Give an example of a real-life mapping. 

10.  

1.6 Case Study  

Geographic mapping plays a critical role in disaster response efforts, enabling responders to 

visualize affected areas, identify vulnerable populations, and coordinate rescue and relief 

operations efficiently. This case study illustrates the use of mapping technology in the 

aftermath of a natural disaster. 

Objective: A powerful earthquake has struck a densely populated region, causing widespread 

destruction to infrastructure and displacing thousands of people. Emergency responders are 

mobilizing to provide aid and support to affected communities. 

 

1.7 References 

1. Dantzig, T. (2007). Number: The Language of Science (Revised edition). Dover 

Publications. 

2. Stewart, J. (2015). Calculus (8th ed.). Brooks Cole. 
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CHAPTER - 2 

Derivatives 

Learning Objectives: 

 Define what a derivative is and its significance in calculus. 

 Understand and apply differentiation rules, including the power rule, product rule, quotient 

rule, and chain rule. 

 Identify and analyze real-world applications of derivatives, such as optimization, curve 

sketching, and motion problems. 

 

Structure: 

2.1 Derivatives 

2.2 Fundamental Rules of Derivatives 

2.3 Summary 

2.4 Keywords 

2.5 Self-Assessment Questions 

2.6 Case Study 

2.7 References 

 

2.1 Derivatives 

A derivative in calculus is the rate of change of a quantity y with respect to another quantity 

x. It is also termed the differential coefficient of y with respect to x. Differentiation is the 

process of finding the derivative of a function. 

Let us learn what exactly a derivative means in calculus and how to find it along with rules 

and examples. 

 

Meaning of Derivatives in Calculus 

The derivation of a function f(x) is usually represented by d/dx(f(x)) (or) df/dx (or) Df(x) 

(or) f'(x). Let us see what a derivative technically means. Consider a curve of function f(x) 

and let two points on it be (x, f(x)) and ((x + h), f(x + h)). Then the slope of the secant line 

through these points is given by [f(x + h) - f(x)]/(x + h - x) = [f(x + h) - f(x) / h. See the figure 

below and observe that when the distance between two points is closely equal to 0 (i.e., as h 

approaches 0), the second point overlaps the original point and the secant line becomes 

https://www.cuemath.com/calculus/What-are-functions/
https://www.cuemath.com/geometry/slope/
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the tangent line. In calculus, the slope of the tangent line is referred to as the derivative of the 

function. i.e., 

 The derivation of the function, f '(x) = Slope of the tangent = limh→0 [f(x + h) -f(x) / h. 

 

Figure 2.1.1 Derivative of function 

This formula is popularly known as the "limit definition of the derivative" (or) "derivative by 

using the first principle". 

 

Interpretation of Derivatives 

The derivation of a mapping f(x) in math is denoted by f'(x) and can be contextually 

interpreted as follows: 

 The derivation of a mapping at a point is the slope of the tangent drawn to that curve 

at that point. 

 It also represents the instantaneous rate of change at a point on the map. 

 The velocity of a particle is found by finding the derivative of the displacement 

function. 

 The derivatives are used to optimize (maximize/minimize) a function. 

Thus, whenever we see the phrases like "slope/gradient", "rate of change", "velocity (given 

the displacement)", "maximize/minimize" etc. Then it means that the concept of derivatives is 

involved. 

 

Derivation of a Function Using the First Principle 

The derivation of a function can be obtained by the limit definition of derivative which is 

f'(x) = limh→0 [f(x + h) - f(x) / h. This process is known as the differentiation by the first 

https://www.cuemath.com/calculus/tangent-line/
https://www.cuemath.com/calculators/instantaneous-rate-of-change-calculator/
https://www.cuemath.com/calculus/limits/
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principle. Let f(x) = x
2 

and we will find its derivative using the above derivative formula. 

Here, f(x + h) = (x + h)
2
 as we have f(x) = x

2
. Then the derivative of f(x) is, 

f '(x) = limh→0 [(x + h)
2
 - x

2
] / h 

= limh→0 [ x
2
 + 2xh + h

2
 - x

2
] / h 

= limh→0 [ 2xh + h
2
] / h 

= limh→0 [ h(2x + h) ] / h 

= limh→0 (2x + h) 

= 2x + 0 

= 2x 

Thus, the derivative of x
2
 is 2x. But it may be difficult to use this limit definition to find the 

derivatives of complex functions. Thus, there are some derivative formulas (of course, which 

are derived from the above limit definition) that we can use readily in the process of 

differentiation. 

 

Power Rule of Derivatives 

By using the above example, the derivative of x
2
 is 2x. Similarly, we can prove that the 

derivative of x
3
 is 3x

2
, the derivative of x

4
 is 4x

3
, and so on. Power rule generalizes this and it 

is stated as d/dx (x
n
) = n x

n - 1
. 

 

Derivatives of Log/Exponential Functions 

 The derivative of ln x is, d/dx (ln x) = 1/x 

 The derivative of log x is, d/dx (loga x) = 1/(x ln a) 

 The derivative of e
x
 is, d/dx (e

x
) = e

x
 

 The derivative of a
x
 is, d/dx (a

x
) = a

x
 ln a 

 

Derivatives of Trigonometric Functions 

https://www.cuemath.com/calculus/power-rule/
https://www.cuemath.com/calculus/derivative-of-ln-x/
https://www.cuemath.com/calculus/derivative-of-log-x/
https://www.cuemath.com/calculus/differentiation-of-e-to-the-power-x/
https://www.cuemath.com/calculus/derivative-of-exponential-function/
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2.2 Fundamental Rules of Derivatives 

The following are the fundamental rules of derivatives. Let us discuss them in detail. 

Power Rule: By this rule, if y = x
n 

, then dy/dx = n x 
n-1 

. Example: d/dx (x
5
) = 5x

4
. 

Sum/Difference Rule: The derivative process can be distributed over addition/subtraction. 

i.e., dy/dx [u ± v]= du/dx ± dv/dx. 

Product Rule: The product rule of derivatives states that if a function is a multiplication of 

two functions, then its derivation is the derivative of the second mapping multiplied by the 

first function added to the derivation of the first function multiplied by the second function. 

dy/dx [u × v] = u · dv/dx + v · du/dx. If y = x
5 

e
x 
, we have y' = x

5 
. e

x 
+ e

x 
. 5x

4 
= e

x 
(x

5 
+ 5x

4
) 

Quotient Rule: The quotient rule of derivatives states that  

d/dx (u/v) = (v·du/dx - u·dv/dx)/v
2
 

Constant multiple Rule: The constant multiple rule of derivatives states that d/dx [c(f(x)] = 

cd/dx f(x). i.e., the constant which when multiplied by a function, comes out of the 

differentiation process. For example, d/dx (5x
2
) = 5 d/dx (x

2
) = 5(2x) = 10 x. 

Constant Rule: The constant rule of derivatives state that the derivative of any constant is 0. 

If y = k, where k is a constant, then dy/dx = 0. Suppose y = 4, y' = 0. This rule directly 

follows from the power rule. 

 

Derivatives of Composite Functions (Chain Rule) 

If f and g are differentiable functions in their domain, then f(g(x)) is also differentiable. This 

is known as the chain rule of differentiation used for composite functions. (fog)'(x) = f'[(g(x)] 

g'(x). This also can be write as "if y = f(u) and u = g(x) , then dy/dx = dy/du · du/dx. 

For example, consider y = tan
2
x. This is a composite function. We can write this function as y 

= u
2
, where u = tan x. Then 

https://www.cuemath.com/calculus/derivative-rules/
https://www.cuemath.com/calculus/product-rule/
https://www.cuemath.com/calculus/quotient-rule/
https://www.cuemath.com/calculus/constant-multiple-rule/
https://www.cuemath.com/algebra/constants/
https://www.cuemath.com/calculus/differentiable/
https://www.cuemath.com/calculus/f-of-g-of-x/
https://www.cuemath.com/chain-rule-formula/
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dy/du = 2u 

du/dx = d/dx (tan x) = sec
2
x 

By the chain rule, 

dy/dx = dy/du · du/dx 

= 2u · sec
2
x 

= 2 tan x sec 
2
 x 

 

Derivatives of Implicit Functions 

In equations where y as a function of x cannot be explicitly defined by the variables x and y, 

we use implicit differentiation. If f(x, y) = 0, then differentiate on both sides with respect to x 

and group the terms containing dy/dx at one side, and then solve for dy/dx. 

For example, 2x + y = 12 

d/dx(2x + y) = d/dx(0) 

2 + dy/dx = 0 

dy/dx = -2 

 

Parametric Derivatives 

In a function, we may have the dependent variables x and y which are dependent on the third 

independent variable. If x = f(t) and y = g(t), then derivative is calculated as dy/dx = 

f'(x)/g'(x). Suppose, if x = 4 + t
2 

and y = 4t
2 

-5t
4 

, then we find dy/dx as follows. 

dx/ dt = 2t and dy/dt = 8t -20t
3
 

dy/dx = (dy/dt)/(dx/dt) 

dy/dx = (8t -20t
3 

)/2t 

= 2t (4 - 10t
2 

) / 2t 

dy/dx = 4 - 10t
2 

 

Higher-order Derivatives 

We can find the successive derivatives of a function and obtain the higher-order derivatives. 

If y is a function, then its first derivative is dy/dx. The second derivative is d/dx (dy/dx) 

which also can be written as d
2
y/dx

2
. The third derivative is d/dx (d

2
y/dx

2
) and is denoted by 

d
3
y/dx

3
 and so on. 

Alternatively, the first, second, and third derivatives of f(x) can be written as f'(x), f''(x), and 

f'''(x). For higher order derivatives, we write the number in brackets as the exponent. Suppose 

https://www.cuemath.com/calculus/implicit-differentiation/
https://www.cuemath.com/algebra/exponents/
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y = 4x
3
, we get the successive derivatives as follows. y' = 12x

2
 , y'' = 24 x and y''' = 24, y

(4)
= 

0. 

 

Partial Derivatives 

If u = f(x,y) we can find the partial derivative of with respect to y by keeping x as the 

constant or we can find the partial derivative with respect to x by keeping y as the constant. 

Suppose f(x, y) = x
3 

y
2 

, the partial derivatives of the function are: 

 ∂f/∂x(x
3 

y
2
) = 3x

2
y and 

 ∂f/∂y(x
3 

y
2
) = x

3 
2y 

Further, we can find the second-order partial derivatives also like ∂
2
f/∂x

2
, ∂

2
f/∂y

2
, ∂

2
f/∂x ∂y, 

and ∂
2
f/∂y ∂x. 

 

Finding Derivative Using Logarithmic Differentiation 

Sometimes, the functions are too complex to find the derivatives (or) one function might be 

raised to another function like y = f(x)
g(x)

. In such cases, we can take log (or) ln on both sides, 

apply log rules, and then differentiate on both sides to get dy/dx. This process is known 

as logarithmic differentiation in calculus. 

 

Example 2.1.1: Find the derivative of y = x
x
. 

Solution: 

Applying ln on both sides, 

ln y = ln x
x
 

ln y = x ln x 

Taking derivative on both sides, 

1/y dy/dx = x (1/x) + ln x (1) (by chain rule on left side and product rule on right side) 

1/y dy/dx = 1 + ln x 

dy/dx = y (1 + ln x) = x
x
 (1 + ln x) 

 

Maxima/Minima by Using Derivatives 

The concept of slope, and hence the derivatives, is used to find the maximum or 

minimum value of a function. There are two tests that use derivatives and are used to find the 

maxima/minima of a function. They are 

 first derivative test 

https://www.cuemath.com/calculus/partial-derivative/
https://www.cuemath.com/algebra/log-rules/
https://www.cuemath.com/calculus/logarithmic-differentiation/
https://www.cuemath.com/calculus/maxima-and-minima/
https://www.cuemath.com/calculus/maxima-and-minima/
https://www.cuemath.com/calculus/first-derivative-test/
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 second derivative test 

 

First Derivative Test 

We can just use the first derivative to determine the maximum or minimum by observing 

(Figure 2.2.1) the following points: 

 f'(x) represents the slope of a tangent line. 

 Hence, if f'(x) > 0, the function is increasing, and if f'(x) < 0, the function is decreasing. 

 If f'(x) > 0 is changing to f'(x) < 0 at a point, then the function has a local maximum at that 

point. 

 If f'(x) < 0 is changing to f'(x) > 0 at a point, then the function has a minimum at that 

point. 

 Note that f'(x) = 0 at local maximum and local minimum. 

 

Figure 2.2.1 Maxima & Minima 

 

Second Derivative Test 

The second derivative test uses the critical points and the second derivative to find the 

maxima/minima. To perform this test: 

 Find the critical points by setting f'(x) = 0. 

 Substitute each of these in f''(x). If f''(x) < 0, then the function is maximum at that 

point and if f''(x)>0, then the function is minimum at that point. 

 If f''(x) = 0, the function neither has maxima nor minima at that point, and in this 

case, it is known as the point of inflection. 

https://www.cuemath.com/calculus/second-derivative-test/
https://www.cuemath.com/calculus/local-maximum-and-minimum/
https://www.cuemath.com/calculus/critical-point/
https://www.cuemath.com/calculators/inflection-point-calculator/
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2.3 Summary 

The derivative of a function represents its rate of change with respect to its independent 

variable. It gives the slope of the tangent line to the graph of the function at any point. 

 The derivative of a function f(x) and higher-order derivatives with respect to x is denoted 

by 𝑓’(𝑥), 𝑓’’(𝑥), 𝑓’’’(𝑥),......etc. 

 Rules an formulas 

 

 

2.4 Keywords 
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 Calculus 

 Derivatives 

 Parametric Derivatives 

 Higher Order Derivatives 

 Maxima and Minima 

 

2.5 Self – Assessment Questions 

1. Differentiate f(x)=3x
4
−5x

2
+2x−7. 

2. Differentiate g(x)=(2x
3
+3x

2
−x+1)/x

2
. 

3. Find the equation of the tangent line to f(x)=x
2
−4x+3 at x=2. 

4. Determine the local extrema of h(x)=x
3
−6x

2
+9x+15. 

5. Find the intervals of concavity and the inflection points for k(x)=x
4
−8x

2
. 

 

2.6 Case Study  

A ladder 10 feet long is leaning against a wall. If the bottom of the ladder is sliding away 

from the wall at a rate of 1 foot per second, how fast is the top of the ladder sliding down the 

wall when the bottom is 6 feet from the wall? 

 

2.7 References 

1. Larson, R., & Edwards, B. (2017). Calculus of a Single Variable (11th ed.). Cengage 
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2. Stewart, J. (2016). Calculus: Early Transcendentals (8th ed.). Cengage Learning. 
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CHAPTER - 3 

Limits and Continuous Function 

 

Learning Objectives: 

 Apply the concept of limits to analyze the behaviour of functions near specific points. 

 Use algebraic manipulation and limit laws to simplify expressions and evaluate limits. 

 Identify the three conditions for a function to be continuous at a point (existence of the 

limit, existence of the function value, equality of the limit and function value). 

 

Structure: 

3.1 Limits and Continuity: Definitions, Types, Formulas  

3.2 Continuity and Differentiability 

3.3 Differentiability of Functions 

3.4 Summary 

3.5 Keywords 

3.6 Self-Assessment Questions 

3.7 Case Study 

3.8 References   
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3.1 Limits and Continuity: Definitions, Types, Formulas 

In calculus, limits and continuity are important concepts that help us understand the behavior 

of functions as they approach certain values. A limit is a value that a function approaches as 

its input approaches a certain value. Continuity is the property of a function that describes 

whether it has any sudden jumps or breaks, or whether it can be drawn without lifting the pen 

from the paper. 

 

Introduction to Limits and Continuity 

 Limits and continuity are fundamental concepts in calculus. They allow us to understand 

how functions behave as their inputs approach certain values and to make precise 

statements about the behaviour of functions at certain points. 

 Continuity refers to the property of a function where the output changes smoothly and 

gradually as the input changes. A function is continuous at a point in the event that the 

limit of the function at that point exists and is equal to the esteem of the function at that 

point. In the event that a function isn't continuous at a point, it is said to be discontinuous. 

 Limits, on the other hand, allude to the behaviour of a function as the input approaches a 

certain value/point. A limit can be utilized to portray what happens to a function if the 

input gets subjectively near to a certain value, if the function isn't defined at that point. 

 

Definition 3.1.1 

The formal definition of a limit is given as follows: 

For a function f(x), the limit of f(x) as x approaches a equals L, denoted as 

Lim. f(x) = L   

for every number ε > 0 there exists a corresponding number δ > 0 such that |f(x) - L| < ε 

whenever 0 < |x - a| < δ. 

This definition can be hard to understand at first, but it basically says that as x gets arbitrarily 

close to a, f(x) gets arbitrarily close to L. The ε and δ values represent arbitrarily small 

positive numbers that determine the level of precision required for the limit. 

For example, consider the function 

f(x) = (x
2
 - 1)/(x - 1) 

If we try to evaluate f(1), we get an undefined expression (0/0). However, we can find the 

limit of f(x) as x approaches 1 by factoring the numerator and simplifying: 

= f(x) = (x
2
 - 1)/(x - 1) 

= (x + 1)(x - 1)/(x - 1) 
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= x + 1 

Now we can see that as x approaches 1, f(x) approaches 2. Therefore, we can write lim f(x) as 

x approaches 1 = 2. 

 

Properties of Limits 

There are several important properties of limits that are useful for evaluating and 

manipulating functions. These include: 

 The limit of a whole is the sum of the limits: 

      lim (f(x) + g(x)) = lim f(x) + lim g(x) 

 The limit of a product is the product of the limits: 

      lim (f(x) * g(x)) = lim f(x) * lim g(x) 

 The limit of a quotient is the quotient of the limits: 

      lim (f(x) / g(x)) = lim f(x) / lim g(x) (given lim g(x) ≠ 0) 

 The limit of a constant multiple is the constant times the restrain: 

      lim (k * f(x)) = k * lim f(x) 

 The limit of a composite function is the restrain of the external function connected to the 

constrain of the inner function: 

      lim f(g(x)) = f(lim g(x)) 

In expansion to these properties, there are a few hypotheses that can be utilized to assess 

limits, such as the squeeze theorem, which states that in the event that 

g(x) ≤ f(x) ≤ h(x)  

for all x in a few interim containing a, and lim g(x) = lim h(x) = L, at that point lim f(x) = L. 

Another important theorem is the intermediate value theorem, which states that if f is a 

continuous function on the closed interval [a, b] and c is a number between f(a) and f(b), at 

that point there exists a number x between a and b such that f(x) = c. 

Let's outline a few of these properties with a case. Consider the work 

f(x) = x
2
 - 3x + 2 

We can use the properties of limits to evaluate lim f(x) as x approaches 2. 

First, we can factor in the expression: 

f(x) = x
2
 - 3x + 2 

= (x - 1)(x - 2) 

Using the product property of limits, we can write: 

lim f(x) as x approaches 2 = lim (x - 1)(x - 2) as x approaches 2 

Then, we can use the limit laws to simplify this expression: 
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= lim (x - 1)(x - 2) as x approaches 2 

= (lim (x - 2)) * (lim (x - 1)) as x approaches 2 

= (2 - 2) * (2 - 1) 

=  0 

Therefore, we can conclude that lim f(x) as x approaches 2 = 0. 

 

Evaluating Limits 

Several methods for evaluating limits include direct substitution, factoring, and L'Hopital's 

rule. Direct substitution is the simplest method, and it involves substituting the input value 

directly into the function and evaluating the resulting expression. 

For example, to evaluate 

lim (x
2
 - 4x + 3)/(x - 3)  

as x approaches 3, we can simply substitute x = 3 into the expression to get: 

lim (x
2
 - 4x + 3)/(x - 3) = lim (3

2
 - 4(3) + 3)/(3 - 3) = lim 0/0 

Since this expression is indeterminate, we can use factoring or L'Hopital's rule to evaluate the 

limit further. 

Factoring involves rewriting the function as a product of simpler expressions that can be 

canceled out. 

For example, using the same limit as above, we can factor the numerator as 

(x - 3)(x - 1) and cancel out the common factor of (x - 3) to get: 

lim (x
2
 - 4x + 3)/(x - 3) = lim (x - 1)  

as x approaches 3 

This limit evaluates to 2, so we can conclude that 

lim (x
2
 - 4x + 3)/(x - 3) as x approaches 3 = 2 

 

L-Hospital's rule is another method for evaluating indeterminate limits. It involves taking the 

derivative of both the numerator and denominator of the function and evaluating the resulting 

expression. For example, to evaluate lim sin(x)/x as x approaches 0, we can apply L-

Hospital's rule to get: 

lim sin(x)/x =lim cos(x) as x approaches 0 

This limit evaluates to 1, so we can conclude that lim sin(x)/x as x approaches 0 = 1. 
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3.2 Continuity and Differentiability 

 

Figure 3.2.1 Continuity and Differentiability 

 

 Continuity and differentiability are closely related concepts in calculus. A function is said 

to be continuous at a point if its graph has no breaks or jumps at that point. A function is 

said to be differentiable at a point if it has a well-defined tangent line at that point. 

 The differentiability implies continuity theorem states that if a function is differentiable at 

a point, then it is also continuous at that point. However, the converse is not necessarily 

true - a function can be continuous at a point but not differentiable at that point. 

 For example, the function f(x) = |x| is continuous at x = 0, but it is not differentiable at that 

point because it has a sharp corner. 

 The relationship between continuity and differentiability can also be communicated 

regarding the derivative. In the event that a function is differentiable at a point, at that 

point its derivative exists at that point. 

 The derivative gives the slant of the tangent line at that point, and the slant of the tangent 

line can be utilized to decide whether the function is expanding or diminishing at that 

point. 

 

Types of Discontinuities 

 A discontinuity occurs when a function has a break in its graph, either due to a hole, jump, 

or asymptote. 

 A removable discontinuity happens when a function has a gap in its graph, which can be 

filled in by rethinking the function at that point. 

 For illustration, the function f(x) = (x^2 - 4)/(x - 2) includes a removable discontinuity at x 

= 2, where the function is vague. Be that as it may, we are able to redefine the work as f(x) 

= x + 2 for x ≠ 2 to fill within the gap and make the function nonstop. 

 A jump discontinuity happens when a work has two diverse limits from the left and right 

sides of a point. For illustration, the work f(x) = {x on the off chance that x < 0, 1 in case x 
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≥ 0} includes a jump discontinuity at x = 0, since the left-hand restrain is and the right-

hand constrain is 1. 

 An infinite discontinuity occurs when a function approaches positive or negative infinity 

at a certain point. For example, the function f(x) = 1/x has an infinite discontinuity at x = 0 

since the function grows without bound as x approaches 0. 

 

Applications of Limits and Continuity 

Limits and continuity are important mathematical concepts that have a variety of applications 

in data science. Here are a few examples: 

1. Derivatives and gradients: Limits are an essential component of calculus, which is the 

foundation of many data science techniques. Derivatives, which are based on limits, are 

used to calculate gradients, which are crucial for optimizing models using techniques such 

as gradient descent. 

2. Probability distributions: Continuous probability distributions are often used in data 

science to model real-world phenomena. For example, the normal distribution is 

commonly used to model the distribution of heights or weights in a population. 

3. Regression analysis: In regression analysis, a continuous variable is predicted based on 

other variables. The concept of continuity is essential here, as the prediction function must 

be continuous in order to be useful. 

4. Time series analysis: Time series data is a sequence of values that are ordered by time. 

The continuity of time is an important aspect of time series analysis, as it allows us to 

model the relationship between past and future values. 

5. Signal processing: Many signals, such as audio or video, are continuous in nature. 

Techniques from calculus, such as Fourier transforms, are used to analyze and process 

these signals. 

 

Conclusion 

In conclusion, limits and continuity are fundamental concepts in calculus that help us 

understand the behaviour of functions as they approach certain values. They are important in 

many fields, such as physics, economics, and engineering, and are used to model and 

optimize various systems. The relationship between continuity and differentiability is also 

important, with differentiability implying continuity. Overall, understanding limits and 

continuity is crucial for a solid foundation in calculus. 
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Key Takeaways 

1. A limit is a value that a function approaches as its input approaches a certain value. 

2. Continuity is the property of a function that describes whether it has any sudden jumps or 

breaks. 

3. Evaluating limits can involve different methods, such as direct substitution, factoring, and 

L-Hospital's rule. 

4. Types of discontinuities include removable, jump, and infinite discontinuities. 

5. Differentiability implies continuity, but the converse is not necessarily true. 

6. Limits and continuity are fundamental concepts in calculus and are important for 

understanding the behaviour of functions. 

 

3.3 Differentiability of Functions:  

The differentiation of a function gives the change of the function value with reference to the 

change in the domain of the function. Differentiability of a function can be understood both 

graphically and algebraically. Geometrically the differentiation of function is the slope of the 

graph of the function y = f(x) at the point x=a, in the domain of the function. Algebraically 

the differentiation of the function is the change in the value of the function y = f(x) 

from (𝑥1) to (𝑥2), with reference to the change in the domain value of x from 𝑥1, to 𝑥2. This 

can be expressed as 
𝑑𝑦

𝑑𝑥
=

𝑓(𝑥2)−𝑓(𝑥2)

𝑥2−𝑥1
. 

 

Figure 3.3.1: Differentiability of Functions 

 

Differentiation of the function at point 𝑃 =
𝑑𝑦

𝑑𝑥
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For a real valued function f(x) having a point x = c in the domain of this function, the 

derivative of the function f(x) at the point x = c is defined as 𝐿𝑖𝑚𝑥→𝑐𝑓
′ (𝑐) =

𝑓(𝑐+)−𝑓(𝑐)


. 

Thus the derivative of a function is defined as f'(x) or (d/dx)f(x) and is also represented 

as 𝑓 ′ (𝑥) = 𝐿𝑖𝑚𝑥→
𝑓(𝑥+)−𝑓(𝑥)


. This process of finding the derivative is called as 

differentiation. Also, the phrase differentiate f(x) with respect to x is used to mean dy/dx or 

f'(x). 

The three important rules of the algebra of differentiation of functions are as follows. 

(f + g)'(x) = f'(x) + g'(x) 

(f.g)'(x) = f'(x).g(x) + g'(x).f(x) 

(f/g)'(x) = (f'(x).g(x) - g'(x).f(x))/(f(x))
2 

 

The following are some of the important differentiation of the functions f(x) based on the 

type of functions. 

 Derivative of Composite Function 

 Derivatives of Implicit Functions 

 Derivatives of Inverse Trigonometric Functions 

 Derivatives of Exponential Functions 

 Derivatives of Logarithmic Functions 

 Derivatives of Functions in Parametric Forms 

 

Theorems on Continuity and Differentiability 

The following important theorems on continuity and differentiability, set the right 

background for the deeper understanding of the concepts of continuity and differentiability. 

Theorem 3.3.1: If two functions f(x) and g(x) are continuous at a real valued function and 

continuous at a point x = c, then we have: 

f(x) + g(x) is continuous at the point c = c 

f(x) - g(x) is continuous at a point x = c 

g(x).g(x) is continuous at point x = c 

f(x)/g(x) is continuous at a point x = c, provided g(c) ≠ 0  

 

Theorem 3.3.2: For two real values functions f(x) and g(x) such that the composite function 

fog(x) is defined at x = c. If g(x) is continuous at x = c and the function f(x) is continuous at 

g(c), then fog(x) is continuous at x = c. 
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Theorem 3.3.3: If a given function f(x) is differentiable at a point x = c, then it is continuous 

at that point. This can be summarized as every differentiable function is continuous. 

 

Theorem 3.3.4: Chain Rule: For a real valued function f(x), which is a composite of two 

functions u and v ie, f = vou. Also let us suppose t = u(x) and if both dt/dx and dv/dt exists, 

then we have df/dx = dv/dt.dt.dx. 

 

Theorem 3.3.5: The derivative of e
x
 with respect to x is e

x
. d/dx.e

x
 = 1. And the derivative of 

logx with respect to x is 1/d. d/dx. logx = 1/x. 

 

Theorem 3.3.6: (Rolle's Theorem). If a function f(x) is continuous across the interval [a, b] 

and differentiable across the interval (a, b), such that f(a) = f(b), and a, b are some real 

numbers. Then there exists a point c in the interval [a, b] such that f'(c) = 0. 

 

Theorem 3.3.7: (Mean Value Theorem). If a function f(x) is continuous across the interval 

[a, b] and differentiable across the interval (a, b), then there exists a point c in the interval [a, 

b] such that 𝑓′(𝑐)=𝑓(𝑏)−𝑓(𝑎)𝑏−𝑎. 

 

Successive Differential 

Successive differentiation is the differentiation of a function successively to derive its higher-

order derivatives. 

1. If 𝑦=𝑓(𝑥) is a function of 𝑥, then the derivative of 𝑦 with respect to 𝑥 is denoted 

by 𝑑𝑦/𝑑𝑥 or 𝐷𝑦 or 𝑓′(𝑥) or 𝑦1. This is the first-order derivative of 𝑦. 

2. If 𝑑𝑦/𝑑𝑥 is differentiated again, 𝑦=𝑓(𝑥) is derivable twice with respect to 𝑥, then the 

derivative of 𝑑𝑦/𝑑𝑥 with respect to 𝑥 is denoted by 𝑑2𝑦/𝑑𝑥2
 or 𝐷2𝑦 or 𝑓′′(𝑥) or 𝑦2.This is 

the second-order derivative of 𝑦. 

3. If 𝑑2𝑦/𝑑𝑥2
  is differentiated again, 𝑦=𝑓(𝑥) is derivable thrice with respect to 𝑥, then the 

derivative of 𝑑2𝑦/𝑑𝑥2
  with respect to 𝑥 is denoted by 𝑑3𝑦/𝑑𝑥3

 or 𝐷3𝑦 or 𝑓′′′(𝑥) or 𝑦3. This 

is called the third-order derivative of 𝑦. 

 

Implicit vs Explicit 

A function can be explicit or implicit: 

Explicit: "y = some function of x". When we know x we can calculate y directly. 
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Implicit: "some function of y and x equals something else". Knowing x does not lead directly 

to y. 

 

Example 3.3.1:  

Explicit Form 
 

Implicit Form 

y = ± √ (r
2
 − x

2
) 

 
x

2
 + y

2
 = r

2
 

In this form, y is expressed 

as a function of x.  

In this form, the function is 

expressed in terms of both y and x. 

 

 

Figure 3.3.2: The graph of x
2
 + y

2
 = 3

2 

 

How to do Implicit Differentiation 

 Differentiate with respect to x 

 Collect all the dy/dx on one side 

 Solve for dy/dx  

 

Example 3.3.1: x
2
 + y

2
 = r

2
 

Differentiate with respect to x: 

d/dx(x
2
) + d/dx(y

2
) = d/dx(r

2
) 

Let's solve each term: 

Use the Power Rule:d/dx(x
2
) = 2x 

Use the Chain Rule (explained below):d/dx(y
2
) = 2ydy/dx 

r
2
 is a constant, so its derivative is 0:d/dx(r

2
) = 0 

Which gives us: 

2x + 2ydy/dx = 0 

Collect all the dy/dx on one side 

https://www.mathsisfun.com/data/grapher-equation.html?func1=x%5E2+y%5E2=9&xmin=-5.000&xmax=5.000&ymin=-3.750&ymax=3.750
https://www.mathsisfun.com/calculus/derivatives-rules.html
https://www.mathsisfun.com/calculus/chain-rule.html
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ydy/dx = −x 

Solve for dy/dx: 

dy/dx = −xy 

 

 

Leibniz Theorem 

Leibniz rule generalizes the product rule of differentiation. The Leibniz rule states that if two  

functions f(x) and g(x) are differentiable n times individually, then their product f(x).g(x) is 

also differentiable n times. The Leibniz rule is (𝑓(𝑥). 𝑔(𝑥))𝑛 =  𝐶𝑟𝑓
(𝑛−𝑟)(𝑥). 𝑔𝑟(𝑥)

𝑛
 

The Leibniz rule can be applied to the product of multiple functions and for numerous 

derivatives. Let us understand the different formulas and proof of Leibniz rule. 

(𝑓(𝑥). 𝑔(𝑥))𝑛 =  𝐶𝑟𝑓
(𝑛−𝑟)(𝑥). 𝑔𝑟(𝑥)

𝑛

 

Here n𝐶𝑟 =
𝑛 !

𝑟 !.(𝑛−𝑟)!
. and n! = 1 × 2 × 3 × 4 × ....(n - 1) × n. 

The Leibniz rule is primarily used as the derivative of the product of two functions. The 

Leibniz rule for the first derivative of the product of the functions f(x), and g(x) is equal to 

the sum of the product of the first derivative of the function f(x), and the function g(x), and 

the product of the first derivative of the function g(x), and the function f(x). . 

(f(x).g(x))' = f'(x).g(x) + f(x).g'(x) 

or 

𝑑

𝑑𝑥
. 𝑓(𝑥). 𝑔(𝑥) = 𝑔(𝑥).

𝑑

𝑑𝑥
. 𝑓(𝑥) + 𝑓(𝑥).

𝑑

𝑑𝑥
. 𝑔(𝑥) 

 

Further we can use the leibniz rule to find the second derivative of the product of two 

functions. The leibniz rule for the second derivative of the product of the functions f(x) and 

g(x) can be understood to be similar to the binomial expansion of two terms of second 

degree. Let us also check the second derivative of the product of the functions. 

(f(x).g(x))'' = f''(x).g(x) + 2f'(x).g'(x) + f(x).g'(x) 

or 

𝑑2

𝑑𝑥2
. 𝑓(𝑥). 𝑔(𝑥) = 𝑔(𝑥).

𝑑2

𝑑𝑥2
. 𝑓(𝑥) + 2

𝑑

𝑑𝑥
. 𝑓(𝑥).

𝑑

𝑑𝑥
. 𝑔(𝑥) + 𝑓(𝑥).

𝑑2

𝑑𝑥2
. 𝑔(𝑥) 

 

The Leibniz rule can be applied to the product of multiple functions and for numerous 

derivatives. The Leibniz rule can be proved using mathematical induction. 
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Proof of Leibniz Rule 

The Leibniz rule can be proved with the help of mathematical induction. Let f(x) and g(x) be 

n times differentiable functions. Applying the initial case of mathematical induction for n = 1 

we have the following expression. 

(f(x).g(x))' = f'(x).g(x) + f(x).g'(x) 

Which is the simple product rule and it holds true for n = 1. Let us assume that this statement 

is true for all n > 1, and we have the below expression. 

(𝑓(𝑥). 𝑔(𝑥))𝑛 =  

𝑛

𝐶𝑟𝑓
(𝑛−𝑟)(𝑥). 𝑔𝑟(𝑥) 

Further we have the following expression for n + 1. 

(𝑓(𝑥). 𝑔(𝑥))𝑛+1 =𝑛  𝐶𝑟
𝑛𝑓(𝑛−𝑟)(𝑥). 𝑔𝑟(𝑥)

𝑟=0

 

=𝑛  .𝑛 𝐶𝑟 . 𝑓(𝑛+1−𝑟)(𝑥). 𝑔𝑟(𝑥)

𝑟=0

+𝑛  .𝑛 𝐶𝑟 . 𝑓(𝑛−𝑟)(𝑥). 𝑔𝑟+1(𝑥)

𝑟=0

 

=𝑛  .𝑛 𝐶𝑟 . 𝑓(𝑛+1−𝑟)(𝑥). 𝑔𝑟(𝑥)

𝑟=0

+𝑛+1  .𝑛 𝐶𝑟−1. 𝑓(𝑛+1−𝑟)(𝑥). 𝑔𝑟(𝑥)

𝑟=1

 

=𝑛 𝐶0. 𝑓𝑛+1 𝑥 . 𝑔 𝑥 +𝑛  .𝑛 𝐶𝑟 . 𝑓 𝑛+1−𝑟  𝑥 . 𝑔𝑟 𝑥 

𝑟=1

 

+𝑛  .𝑛 𝐶𝑟−1. 𝑓 𝑛+1−𝑟  𝑥 . 𝑔𝑟 𝑥 +𝑛𝐶𝑛 . 𝑓 𝑥 . 𝑔𝑛+1 𝑥 

𝑟=1

 

= 𝑓𝑛+1(𝑥). 𝑔(𝑥)+𝑛  [𝑛𝐶𝑟+𝑛𝐶𝑟]. 𝑓(𝑛+1−𝑟)(𝑥). 𝑔𝑟(𝑥) + 𝑓(𝑥). 𝑔𝑛+1(𝑥)

𝑟=1

. 

= 𝑓𝑛+1 𝑥 . 𝑔 𝑥 +𝑛  .𝑛+1 𝐶𝑟 . 𝑓 𝑛+1−𝑟  𝑥 . 𝑔𝑟 𝑥 + 𝑓 𝑥 . 𝑔𝑛+1 𝑥 

𝑟=1

 

=𝑛+1  .𝑛+1 𝐶𝑟 . 𝑓(𝑛+1−𝑟)(𝑥). 𝑔𝑟(𝑥)

𝑟=0

 

 

Examples on Leibniz Rule 

Example 3.3.2: Find the derivative of the product of the functions f(x) = x
4
 , and g(x) = 

Logx, using the Leibniz rule. 

Solution: 

The two given functions are f(x) = x
4
 , and g(x) = Logx. 

The rule for Leibniz formula for product of two functions f(x), g(x) is  
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𝑑

𝑑𝑥
. 𝑓(𝑥). 𝑔(𝑥) = 𝑔(𝑥).

𝑑

𝑑𝑥
. 𝑓(𝑥) + 𝑓(𝑥).

𝑑

𝑑𝑥
. 𝑔(𝑥) 

=
𝑑

𝑑𝑥
. 𝑥4. 𝐿𝑜𝑔𝑥 = 𝐿𝑜𝑔𝑥.

𝑑

𝑑𝑥
. 𝑥4 + 𝑥4 .

𝑑

𝑑𝑥
. 𝐿𝑜𝑔𝑥 

=
𝑑

𝑑𝑥
. 𝑥4. 𝐿𝑜𝑔𝑥 = 𝐿𝑜𝑔𝑥. 4𝑥3 + 𝑥4 .

1

𝑥
 

𝑑

𝑑𝑥
. 𝑥4 . 𝐿𝑜𝑔𝑥 = 4𝑥3. 𝐿𝑜𝑔𝑥 + 𝑥3 

 

Therefore, by using leibniz rule the derivative of the product of the two given functions 

is 4𝑥3 . 𝐿𝑜𝑔𝑥 + 𝑥3. 

 

3.4 Summary 

Understanding limits and continuous functions is fundamental in the study of differential 

equations, as it lays the groundwork for analyzing and solving these equations accurately. 

 L'Hôpital's Rule: If the limit results in an indeterminate form 0/0 or ∞/∞, differentiate the 

numerator and the denominator and then find the limit. 

 Limits: The limit of a function f(x) as x approaches a point a is denoted as Limx→af(x). It 

represents the value that f(x) gets closer to as x gets closer to a. 

 Continuous Functions: A function f(x) is continuous at a point a if the following three 

conditions are met: 

1. f(a) is defined. 

2. Limx→af(x) exists. 

3. Limx→af(x) =f(a). 

 A function f(x) is continuous on an interval if it is continuous at every point within the 

interval. 

 

3.5 Keywords 

 Limit and Continuity 

 Differentiability 

 Leibnitz‟s rule 

 Euler‟s theorem 

 

3.6 Self – Assessment Questions 

1. Determine if f(x)=(x
2
−4)/(x+2) is continuous at x=−2. 
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2. Investigate the continuity of g(x)=x at x=0. 

3. Compute the limit of f(x)=(x
2
−1)/(x−1) as x approaches 1. 

4. Find limx→∞(1/x)  and limx→0+ln(x). 

5. Determine limx→∞(2x
2
−3x+1)/(3x

2
+5). 

6. Calculate limx→−∞(e
x
 /x). 

7. Apply L'Hôpital's Rule to evaluate limx→0(sin(x)/x). 

 

3.7 Case Study  

a) The height of a ladder above the ground is dropping at a rate of 0.1 meters per second as it 

leans against a wall. With its base three meters from the wall, how quickly is the ladder 

slipping away from the wall?  

b) What does the ladder's motion indicate from the pace at which its distance from the wall 

changes? 

 

3.8 References 

1. Larson, R., & Edwards, B. (2017). Calculus of a Single Variable (11th ed.). Cengage 

Learning. 

2. Stewart, J. (2016). Calculus: Early Transcendentals (8th ed.). Cengage Learning. 
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CHAPTER - 4 

Partial Differentiation 

 

Learning Objectives: 

 Apply the concept of partial derivatives to analyze the rate of change of a function with 

respect to one of its variables while holding other variables constant. 

 Differentiate functions of multiple variables with respect to one variable while treating 

other variables as constants. 

 Identify and analyze real-world applications of partial derivatives, such as optimization 

problems in economics, physics, and engineering. 

 

Structure: 

4.1 Partial Derivative 

4.2 First Order Partial Derivatives 

4.3 Second Order Partial Derivatives 

4.4 Power Rule 

4.5 Product Rule 

4.6 Quotient Rule 

4.7 Chain Rule of Partial Differentiation 

4.8 Maxima and Minima 

4.9 Euler‟s theorem on homogeneous functions 

4.10 Lagrange‟s method of undetermined multipliers 

4.11 Summary 

4.12 Keywords 

4.13 Self-Assessment Questions 

4.14 Case Study 

4.15 References  
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4.1 Partial Derivative 

The partial derivative of a function (in two or more variables) is its derivative with respect to 

one of the variables keeping all the other variables as constants. The process of calculating 

partial derivative is as same as that of an ordinary derivative except we consider the other 

variables as the variable with respect to which we are differentiating as constants. 

Let us learn more about how to calculate partial derivatives of different orders along with 

examples. 

 

What is Partial Derivative? 

The partial derivative of a multivariable function, say z = f(x, y), is its derivative with respect 

to one of the variables, x or y in this case, where the other variables are treated as constants. 

For example, 

 for finding the partial derivative of f(x, y) with respect to x (which is represented by ∂f / 

∂x), y is treated as constant  

 for finding the partial derivative of f(x, y) with respect to y (which is represented by ∂f / 

∂y), x is treated as constant 

Note that we are not considering all the variables as variables while doing partial 

differentiation (instead, we are considering only one variable as a variable at a time) and 

hence the name "partial". The limit definition of a partial derivative looks very similar to 

the limit definition of the derivative. We can find the partial derivatives using the following 

limit formulas: 

If z=f(x,  y), then 

 ∂f / ∂x = lim h → 0 [ f(x + h, y) - f(x, y) ] / h 

 ∂f / ∂y = lim h → 0 [ f(x, y + h) - f(x, y) ] / h 

These formulas resemble the derivative definition using the first principle. 

 

Example 4.1.1 

If f (x, y) = xy, then find the partial derivative ∂f / ∂x. 

Solution: 

∂f / ∂x = lim h → 0 [ f(x + h, y) - f(x, y) ] / h 

= lim h → 0 [ (x + h)y - xy ] / h 

= lim h → 0 [xy + hy - xy] / h 

= lim h → 0 [hy]/h 
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= lim h → 0 y 

= y 

Therefore, ∂f / ∂x = y. 

 

Partial Derivative Symbol 

We know that the ordinary derivative of a function y = f(x) is denoted by one of the notations 

dy/dx, d/dx (y), d/dx (f(x)), f '(x), etc. For representing a partial derivative, we use the symbol 

"∂" instead of "d". We pronounce "∂" to be "doh" but it has some other names like "partial", 

"del", "partial dee", "dee", "Jacobi's delta", etc. If z = f(x, y) is a function in two variables 

then 

 ∂f / ∂x is the partial derivative of f with respect to x 

 ∂f / ∂y is the partial derivative of f with respect to y 

Just like how we have different symbols of ordinary derivatives, we have different notations 

for partial derivatives as well. For example, ∂f / ∂x can be written as fx, fx', Dxf, ∂ / ∂x (f), 

∂x f, ∂ / ∂x [f(x, y)], ∂z / ∂x, etc. 

 

Calculate Partial Derivatives 

We have already seen that the limit definitions are used to find the partial derivatives. But 

using the limit formula and computing the limit is not always easy. Thus, we have another 

method to calculate partial derivatives that follow right from its definition. In this method, if 

z = f(x, y) is the function, then we can compute the partial derivatives using the following 

steps: 

 Step 1: Identify the variable with respect to which we have to find the partial derivative. 

 Step 2: Except for the variable found in Step 1, treat all the other variables as constants. 

 Step 3: Differentiate the function just using the rules of ordinary differentiation. 

Wait! Read Step 3 again. Yes, the rules of ordinary differentiation are as same as that of 

partial differentiation. In partial differentiation, just treating variables is different, that's it! 

 

Example 4.1.2 

Let us solve the same above example (If f (x, y) = xy, then find the partial derivative ∂f / ∂x) 

using the above steps. 

Solution: 
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We have to find ∂f / ∂x. It means, we have to find the partial derivative of f with respect to x. 

So we treat y as constant. Thus, we can write 'y' outside the derivative (as in ordinary 

differentiation, we have a rule that says d/dx (c y) = c dy/dx, where 'c' is a constant). Thus, 

∂f / ∂x = ∂ / ∂x (xy) 

= y ∂ / ∂x (x) 

= y (1) (Using power rule, d/dx (x) = 1) 

= y 

We have got the same answer as we got using the limit definition. 

Partial Derivatives of Different Orders 

We have derivatives like first-order derivatives (like dy/dx), second-order derivatives (like 

d
2
y/dx

2
), etc in ordinary derivatives. Likewise, we have first-order, second-order, and higher-

order derivatives in partial derivatives also. 

 

4.2 First Order Partial Derivatives 

If z = f(x, y) is a function in two variables, then it can have two first-order partial derivatives, 

namely ∂f / ∂x and ∂f / ∂y. 

 

Example 4.2.1  

If z = x
2
 + y

2
, find all the first order partial derivatives. 

Solution: 

fx = ∂f / ∂x = (∂ / ∂x) (x
2
 + y

2
) 

= (∂ / ∂x) (x
2
) + (∂ / ∂x) (y

2
) 

= 2x + 0 (as y is a constant) 

= 2x 

fy = ∂f / ∂y = (∂ / ∂y) (x
2
 + y

2
) 

= (∂ / ∂y) (x
2
) + (∂ / ∂y) (y

2
) 

= 0 + 2y (as x is a constant) 

= 2y 

 

4.3 Second Order Partial Derivatives 

The second-order partial derivative is obtained by differentiating the function with respect to 

the indicated variables successively one after the other. If z = f(x, y) is a function in two 

variables, then it can have four second-order partial derivatives, namely ∂
2
f / ∂x

2
, ∂

2
f / ∂y

2
, 

∂
2
f / ∂x ∂y and ∂

2
f / ∂y ∂x. To find them, we can first differentiate the function partially with 
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the latter variable, and then partially differentiate the result with respect to the former 

variable. i.e., 

 fxx = ∂
2
f / ∂x

2
 = ∂ / ∂x (∂f / ∂x) = ∂ / ∂x (fx) 

 fyy = ∂
2
f / ∂y

2
 = ∂ / ∂y (∂f / ∂y) = ∂ / ∂x (fy) 

 fyx = ∂
2
f / ∂x ∂y = ∂ / ∂x (∂f / ∂y) = ∂ / ∂x (fy) 

 fxy = ∂
2
f / ∂y ∂x = ∂ / ∂y (∂f / ∂x) = ∂ / ∂y (fx) 

Observe the notations fyx and fxy. The order of variables in each subscript indicates the order 

of partial differentiation. For example, fyx means to partially differentiate with respect to y 

first and then with respect to x, and this is same as ∂
2
f / ∂x ∂y. 

 

Example 4.3.1  

If z = x
2
 + y

2
, find all the second order partial derivatives. 

Solution: 

In the above example, we have already found that fx = 2x and fy = 2y. 

Now, fxx = ∂ / ∂x (fx) = ∂ / ∂x (2x) = 2 

fyy = ∂ / ∂y (fy) = ∂ / ∂y (2y) = 2 

fyx = ∂ / ∂x (fy) = ∂ / ∂x (2y) = 0 

fxy = ∂ / ∂y (fx) = ∂ / ∂y (2x) = 0 

Now that fyx = fxy. Thus, the order of partial differentiation doesn't matter. 

 

Partial Differentiation Formulas 

The process of finding partial derivatives is known as Partial Differentiation. To find the 

first-order partial derivatives (as discussed earlier) of a function z = f(x, y) we use the 

following limit formulas: 

 ∂f / ∂x = lim h → 0 [ f(x + h, y) - f(x, y) ] / h 

 ∂f / ∂y = lim h → 0 [ f(x, y + h) - f(x, y) ] / h 

 

But instead of using these formulas, just treating all the other variables than the variable with 

respect to which we are partially differentiating as constants would make the process of 

partial differentiation very easier. In this process, we just use the same rules as ordinary 

differentiation and among them; the important rules are as follows: 
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4.4 Power Rule 

The power rule of differentiation says (d/dx0(x
n
) = nx

n-1
. The same rule can be applied in 

partial derivatives also. 

Example 4.4.1  

∂ / ∂x (x
2
y)=? 

Solution: 

∂ / ∂x (x
2
y) = y ∂ / ∂x (x

2
) = y (2x) = 2xy. 

 

4.5 Product Rule 

The product rule of ordinary differentiation says d/dx (uv) = u dv/dx + v du/dx. We can apply 

the same rule in partial differentiation as well when there are two functions of the same 

variable. 

Example 4.5.1  

∂ / ∂x (xy sin x)=? 

Solution: 

∂ / ∂x (xy sin x) = y ∂ / ∂x (x sin x) 

= y [ x ∂ / ∂x (sin x) + sin x ∂ / ∂x (x)] 

= y [ x cos x + sin x] 

 

4.6 Quotient Rule 

The quotient rule of ordinary differentiation says d/dx (u/v) = [ v du/dx - u dv/dx] / v
2
. As 

other rules, this rule can be applied for finding partial derivatives also. 

Example 4.6.1  

∂ / ∂x (xy / sin x)=? 

Solution: 

∂ / ∂x (xy / sin x) 

= y ∂ / ∂x (x / sin x) 

= y [ ( sin x ∂ / ∂x (x) - x ∂ / ∂x (sin x) ) / sin
2
x ] 

= y [ sin x - x cos x] / sin
2
x 

 

4.7 Chain Rule of Partial Differentiation 

The chain rule is used when we have to differentiate an implicit function. The chain rule of 

partial derivatives works a little differently when compared to ordinary derivatives. 

Sometimes, the rule involves both partial derivatives and ordinary derivatives. There are 
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various forms of this rule and the application of one of them depends upon how each variable 

of the function is defined. 

 If y = f(x) is a function where x is again a function of two variables u and v (i.e., x = x (u, 

v)) then 

∂f/∂u = ∂f/∂x · ∂x/∂u; 

∂f/∂v = ∂f/∂x · ∂x/∂v 

 If z = f(x, y), where each of x and y are again functions of a variable t (i.e., x = x(t) and y 

= y(t)) then 

df/dt = (∂f/∂x · dx/dt) + (∂f/∂y · dy/dt) 

 If z = f(x, y) is a function and each of x and y are again functions of two variables u and v 

(i.e., x = x(u, v) and y = y(u, v)) then 

∂f/∂u = ∂f/∂x · ∂x/∂u + ∂f/∂y · ∂y/∂u; 

∂f/∂v = ∂f/∂x · ∂x/∂v + ∂f/∂y · ∂y/∂v 

 

Example 4.7.1  

If z = e
xy

, where x = uv and y = u + v then find the partial derivative ∂f/∂u. 

Solution: 

By the chain rule of partial derivatives: 

∂f/∂u = ∂f/∂x · ∂x/∂u + ∂f/∂y · ∂y/∂u 

= ∂ / ∂x (e
xy

) · ∂ / ∂u (uv) + ∂ / ∂y (e
xy

) · ∂ / ∂u (u + v) 

= (e
xy

 · y) (v) + (e
xy

 · x) (1) 

= e
xy 

(x + vy) 

 

Other Rules of Partial Differentiation 

 If f(x, y) = a constant, then the following formula gives the relation between the ordinary 

derivative and the partial derivatives which follows from implicit differentiation. 

dy/dx =-fx/fy. 

 For any two functions u(x, y) and v(x, y), 

the determinant ∣∣∣(∂u/∂x)(∂u/∂y)(∂v/∂x)(∂v/∂y)∣∣∣|(∂𝑢/∂𝑥)(∂𝑢/∂𝑦)(∂𝑣/∂𝑥)(∂𝑣/∂𝑦)| is 

known as Jacobian of u and v. 

 The Laplace equation of partial derivatives is ∂
2
f/∂x

2
 + ∂

2
f/∂y

2
 + ∂

2
f/∂z

2
 = 0 where f(x, y, 

z) is a function in three variables. Any function f that satisfies the Laplace equation is 

known as the harmonic function. 
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4.8 Maxima and Minima 

Maxima and Minima are called critical points of the function. A maxima is a high point and 

a minima is a low point in any function. In a function, more than one maximum and 

minimum point can exist. The points at which the function attains the highest and lowest 

values are called Maxima and Minima. 

 

Relative Maxima and Minima 

Relative maxima and minima are the points at which the function gives the maximum and 

minimum values respectively in their neighbourhood. Relative maxima and minima of any 

function are easily found by using the first derivatives and second derivative test 

respectively. The graph added below the relative maxima and minima (Figure 4.8.1) of a 

function in its neighbourhood. 

 

Figure 4.8.1 Relative Maxima & Minima 

 

Points of Maxima and Minima (First Derivative Test) 

In any smoothly changing function, the points where the function flattens out, give us either 

minima or maxima. Now, this statement gives rise to two questions.  

1. How to recognize the points at which function flattens out? 

2. Suppose we got a point at which function flattens i.eofcritical point. How to tell whether 

it‟s a minimum or a maximum? 

To answer the first question let‟s look at the slope of the function. The points where the 

function flattens out have zero slopes. We know that the derivative is nothing but the slope 

of the function at a particular point. So, we try to find the points where the derivative is 

zero. Thus, this test is also called the First Derivative Test. Then we equate the differential 

equation with zero to get the critical points as, 

f'(x) = 0 
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The solution to this equation gives us the position of the critical points. These critical points 

tells us that these are the points where the tangent to the curve is parallel to x-axis but still 

we don‟t know whether they are points o maxima or minima for that Second Derivative test 

is used. 

 

Recognizing Maxima and Minima 

As shown in the figure below, it can be seen that if the sign of the derivative is positive 

before the critical point and negative after the critical point, it is a maximum. Similarly, if it 

is negative before the critical point and positive after the critical point. It is a minimum. 

Maxima and minima can also be recognized by the second derivative test. 

 

Figure 4.8.2 Maxima & Minima Slope 

 

Notice the Figure 4.8.2 carefully, and see that the slope of the curve is continuously 

decreasing, and then it becomes zero and goes further towards a negative value.  

 

Second Derivative Test 

When a function‟s slope is zero at x, then the second derivative f”(x) at that point is used to 

tell whether at that point we have maxima or minima. 

1. If f”(x) < 0, then maxima. 

2. If f”(x) > 0, then minima. 

Note: If the second derivative is zero at the critical points, then the test fails.  

 

Steps to Find Relative Maxima and Minima 

To find the relative maxima and minima of a function follow the steps added below, for a 

given function, 

f(x) = x2 – 4 

https://www.geeksforgeeks.org/critical-points/
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We obtain the maximum and minimum value in the interval [-2, 2] as, 

 

Step 1: Differentiate the Function 

Given, 

 f(x) = x
2
 – 4 

 f'(x) = 2x 

 

Step 2: Find out Critical Points 

Putting f'(x) = 0 gives us the position of the critical points for the function. For the given 

function, 

2x = 0 

⇒ x = 0 

Thus, x = 0 is a critical point for this function. Now we need to find out whether it is a 

minimum or a maximum.  

 

Step 3: Test for the Second Derivative 

We use the second derivative test mentioned above to obtain whether the given critical 

point is minima or maxima. In the above case,  

f”(x) = 2  

Notice that, f”(x) > 0. Thus, it must be a minimum. 

 

Step 4: Value at Critical Points 

Find the value of the function at critical points get the smallest value(or the minima) 

 f(0). = (0)2 – 4 = -4 

Thus, the minimum value of f(x) is at x = 0 and the minimum value is -4. 

 

Applications of Relative Maxima and Minima 

Relative Maxima and Minima has various applications. it is used for various purposes such 

as, 

 This concept is used to determine the maximum and minimum value of a stock at 

particular points by equating it to a function that represent the trajectory of the stocks. 

 This concept are used in electronic circuits to manage the voltage and current in the 

system. 
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 Relative maxima and minima is also used in astrophyscis to find the maximum and 

minimum trajectory of an abject, etc. 

 

Absolute Minima and Maxima 

Absolute Maxima and Minima are the maximum and minimum value of the function defined 

in fixed interval. A function in general can have high values or low values as we move along 

the function. The maximum value of function in any interval is known as the maxima and 

minimum value of function is named as the minima. These maxima and minima if defined on 

the whole functions are called the Absolute Maxima and Absolute Minima of the function. 

In this article, we will learn about Absolute Maxima and Minima, How to calculate absolute 

maxima and minima, their examples, and others in detail. 

Definition 4.8.1 

Absolute maximum and absolute minimum 

An absolute maximum of fat c if f(c)≥f(x)for all x in domainof f. The number f(c) is called 

maximum value off in the domain. Similarly an absolute minimum of fat c if f(c)≤f(x) for 

all x in domain of f and the number f(c) is called the minimum value of f on the domain. The 

maximum and minimum value of f are called extreme values of f. 

 

Absolute maxima and minima are maximum and minimum value of function on entire given 

range. Absolute Maxima and Minima are similarly named the global maxima and minima of 

the function it is the maximum and the minimum value that the function can achieve in its 

entire domain. Suppose we have a function f(x) = sinx., defined on interval R that is -1 ≤ sin 

x ≤ 1. 

Thus, 

 Maximum value of f(x). is 1 

 Minimum value of f(x). is -1 

Thus, absolute maxima and minima of f(x) = sin x defined over R is 1 and -1. 

 

Critical Points and Extrema Value Theorem 

Let‟s say we have a function f(x), critical points are the points with derivative of the function 

becomes zero. These points can either be maxima or minima. A critical point is minima or 

maxima are determined by the second derivative test. Since there can be more than one point 

where the derivative of the function is zero, more than minima or maxima is possible. The 

figure below shows a function that has multiple critical points.  
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Figure 4.8.3 Absolute and Local Points of the Maxima & Minima 

 

Notice the Figure 4.8.3, that points A, C are minima, and points B, D are maxima. B and C 

are called local maxima and local minima respectively. This means that these points are 

maximum and minimum in their locality but not necessarily on a global level. Points A and D 

are called global minima and global maxima.  

Let‟s say we have a function f(x) which is twice differentiable. Its critical points are given by 

the f'(x) = 0. Second Derivative Test allows us to check whether the calculated critical point 

is minima or maxima.  

 If f”(x) > 0, then the point x is maxima. 

 If f”(x) < 0, then the point x is minima. 

Now, this test tells us which point is a minimum or a maximum, but it still fails to give us 

information about the global maxima and global minima. Extrema value Theorem comes to 

our rescue.  

 

Extrema Value Theorem 

Extrema value theorem guarantees both the maxima and minima for a function under certain 

conditions. This theorem does not tell us where the extreme points will exist, this theorem 

tells us only that extreme value will exist. The theorem states that,  

If, function f(x)is continuous on closed interval [a, b], then f(x) has both at least one 

maximum and minimum value on [a, b].  
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Absolute Minima and Maxima in Closed Interval 

Now to find the extreme points in any interval, we need to follow some basic steps. Let‟s say 

we have a function f(x) and a region D. We obtain the extreme value of the function in the 

interval. 

Step 1: Find the critical points of function in interval D,  

f'(x) = 0  

Step 2: Find the value of the function at the extreme points of interval D.  

Step 3: The largest value and smallest value found in the above two steps are absolute 

maximum and absolute minimum of function.  

 

Absolute Minima and Maxima in Entire Domain 

Absolute minimum and maximum values of function in the entire domain are the highest and 

lowest value of the function wherever it is defined. A function can have both maximum and 

minimum values, either one of them or neither of them. For example, a straight line extends 

up to infinity in both directions so it neither has a maximum value nor minimum value. 

We need to follow some steps similar to the previous case to find out the absolute maxima 

and minima for the entire domain.  

Step 1: Find the critical points of the function wherever it is defined.  

Step 2: Find the value of the function at these extreme points.  

Step 3: Check for the value of the function when x tends to infinity and negative infinity. 

Also, check for the points of discontinuity.  

Step 4: Maximum and minimum of all these values give us the absolute maximum and 

absolute minimum for the function in its entire domain.  

 

Local Maxima and Minima 

Local Maxima and Local Minima are the maximum and minimum value of the function 

relative to other points over a specific interval of the function. They are generally calculated 

in the same way we calculate Absolute maxima and minima. Local maxima and minima of 

any function can be similar or not similar to Absolute maxima and minima of the function. 

Suppose we have a function f(x) = cos x defined on [-π, π] then is maximum value is 1 and its 

minimum value is -1 this is the local maxima and minima of the function. Now the function 

f(x) defined on R also has the maximum and minimum value of the function to be 1 and -1 

this is absolute maxima and minima of the f(x). Here, we can see that local maxima and 

minima of the function are similar. 
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 f functionhas a local maximum (or relative maximum) at c if an open interval (a,b) 

containing c such that f(c).≥.f(x) for every x ∈ (a,b) 

 Similarly,local minimum of f at c if there is an open interval (a,b) containing c such 

that f(c) ≤ f(x) for every x ! (a,b). 

 

Note 

Absolute maximum and absolute minimum values of a function f on an interval (a,b) are also 

called the global maximum and global minimum of f in (a,b). 

Criteria for local maxima and local minima 

Let f be a differentiable function on an open interval (a,b) containing c and suppose 

that f „‟ (c) exists. 

(i) If f „ (c) = 0 and f „‟ (c) > 0, then local minimum of fat c. 

(ii) If f „ (c) = 0 and f „‟ (c) < 0,then local maximum of fat c. 

 

Note 

In Economics, if y = f(x) represent cost function or revenue function, then the point at which 

dy/dx = 0, the cost or revenue is maximum or minimum. 

 

Example 4.8.1 

Find extrema values of f(x)=2x
3
+3x

2
–12x. 

Solution: 

Given 

f(x) = 2x
3
+3x

2
–12x                      … (1) 

f „ (x) = 6x
2
+6x–12 

f''(x) = 12x + 6 

f „ (x) = 0 ⟹ 6x
2
+6x–12 =0 

⟹ 6(x
2
+x–2)= 0 

⟹ 6(x+2)(x–1)= 0 

⟹ x = –2 and x = 1 

When 

x= –2 

f „‟ (–2) = 12(–2) + 6 

= –18 < 0 
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 f(x) attains local maximum at x = – 2 and local maximum value is obtained from (1) by 

substituting the value x = – 2 

f(–2) = 2 (–2)
3
+3(–2)

2
–12(–2) 

 = –16+12+24 

 = 20. 

When 

x = 1 

f „‟ (1) = 12(1) + 6 

 = 18. 

f(x) attains local minimum at x = 1 and the local minimum value is obtained 

by substituting x = 1 in (1). 

f(1) = 2(1) + 3(1) – 12 (1) 

= –7 

Extremum values are – 7 and 20. 

 

Example 4.8.2 

Find the absolute (global) maximum and absolute minimum of the function f(x)=3x
5
–

25x
3
+60x+1 in the interval [–2,2] 

Solution : 

f(x) = 3x
5
-25x

3
+60x+1 … (1) 

f’ (x) = 15x
4
–75x

2
+60 

= 15(x
4
–5x

2
+4) 

f „ (x) = 0 ⟹ 15(x
4
–5x

2
+4)= 0 

⟹ (x
2
–4)(x

2
–1)= 0 

x = ±2 (or)  x = ±1 

of these four points − 2, ±1 ∈ [−2, 1]  and 2 ∉  [−2,1] 

From (1) 

f(–2) =  3 ( - 2 )
5
 – 25(- 2 )

3
 + 60 ( - 2 ) + 1 

= –15 

When x= 1 

f(1) =  3 ( 1 )
5
 – 25(1 )

3
 + 60 ( 1 ) + 1 

= 39 

When x = – 1 
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f(-1) =  3 ( -1 )
5
 – 25(-1 )

3
 + 60 ( -1 ) + 1 

= –37. 

Absolute maximum is 39 

Absolute minimum is -37 

 

4.9 Euler’s theorem on homogeneous functions 

Consider the expression (𝑥, 𝑦) = 𝑎0𝑥𝑛 + 𝑎1𝑥𝑛−1𝑦 + 𝑎2𝑥𝑛−2𝑦2 + ⋯ + 𝑎n𝑦𝑛                           … (1) 

The degree of each term in the above expression is „n‟. Such an expression is called 

a homogeneous function of degree „𝑛‟. A function f(𝑥,𝑦) is said to be a homogeneous 

function in 𝑥 and 𝑦 of degree „𝑛‟ if 𝑓(𝑡𝑥, 𝑡𝑦) =   𝑡n𝑓(𝑥, 𝑦). 

 

Theorem 4.9.1 

Let f(x,y) be a homogeneous function of order n so that 

 Euler's theorem states that if 𝑓 𝑥1, 𝑥2 , … . , 𝑥𝑛  is a homogeneous function of degree k, 

then:  𝑥𝑖
𝜕𝑓

𝜕𝑥𝑖

𝑛
𝑖=1 = 𝑘𝑓 𝑥1, 𝑥2 , … . , 𝑥𝑛  

 In other words, the sum of the products of each variable and its partial derivative with 

respect to that variable is equal to k times the original function. 

 

Total derivatives 

Definition 4.9.1 

The total derivative of a function of multiple variables represents how the function changes 

with respect to changes in all of its variables, not just one at a time. 

Suppose we have a function 𝑓 𝑥1, 𝑥2, … . , 𝑥𝑛  which depends on 𝑛 variables. The total 

derivative of 𝑓 with respect to a variable 𝑥𝑖  (where 𝑖 ranges from 1 to 𝑛) is denoted as 
𝑑𝑓

𝑑𝑥𝑖
 and 

is defined as: 

𝑑𝑓

𝑑𝑥𝑖
=

𝜕𝑓

𝜕𝑥1

𝑑𝑥1

𝑑𝑥𝑖
+

𝜕𝑓

𝜕𝑥2

𝑑𝑥2

𝑑𝑥𝑖
+ ⋯ … . . +

𝜕𝑓

𝜕𝑥𝑛

𝑑𝑥𝑛

𝑑𝑥𝑖
 

Here, 
𝑑𝑓

𝑑𝑥𝑖
 represents the total derivative of 𝑓 with respect to 𝑥𝑖 , and 

𝑑𝑥𝑗

𝑑𝑥𝑖
  represents the rate of 

change of variable 𝑥𝑗  with respect to 𝑥𝑖 . 

 

4.10 Lagrange's method of undetermined multipliers 
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To determine the minimum or maximum value of a function f(x) subject to the equality 

constraint g(x) = 0 will form the Lagrange`s function as: 

L(x, λ) = f(x) – λg(x) 

Here, L = Lagrange function of the variable x, λ = Lagrange multiplier 

 

Important Notes on Partial Derivatives: 

 While finding the partial derivative with respect to a variable, all the other variables 

should be considered as constants. 

 The order of taking derivatives doesn't matter in partial derivatives. i.e., ∂
2
f/∂x∂y = 

∂
2
f/∂y∂x. 

 The rules of derivatives apply for partial differentiation as well. 

 Instead of using the limit definition, applying derivative formulas make the process of 

finding the partial derivatives easier. 

 

4.11 Summary 

A partial derivative of a function of multiple variables measures how the function changes 

with respect to changes in one variable while keeping all other variables constant. Partial 

derivatives are denoted using the ∂ symbol, which represents a partial differentiation. In 

geometric terms, the partial derivative represents the slope of the tangent line to the surface 

defined by the function in the direction of the specified variable. Understanding partial 

derivatives is fundamental for analyzing functions of multiple variables and solving problems 

in various fields involving interdependent quantities. They provide a powerful tool for 

studying the behavior of functions in complex systems and optimizing their performance. 

 

4.12 Keywords 

 Partial Derivative 

 Higher order partial derivative 

 Rules of Partial derivation 

 Maxima and Minima 

 Lagrange's method 

 

4.13 Self – Assessment Questions 
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4.14 Case Study  

a) A metal sheet measuring twelve meters by eight meters is to be used to build a rectangular 

box with an open top. Determine the box's dimensions that will require the least quantity 

of metal.  

b) How may partial differentiation be used to address the optimization issue mentioned in 

section (a)?  
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CHAPTER - 5 

Lagrange’s and Cauchy’s Forms 

 

Learning Objectives: 

 Recognize the two forms of Taylor's theorem: Lagrange's form and Cauchy's form. 

 Understand the implications of Lagrange's form in approximating functions using Taylor 

polynomials. 

 Apply Cauchy's form to approximate functions and analyze the error in approximation. 

 

Structure: 

5.1.  Cauchy‟s Mean Value Theorem 

5.2.  Lagrange‟s Mean Value Theorem 

5.3  Summary 

5.4  Keywords 

5.5  Self-Assessment Questions 

5.6  Case Study 

5.7  References  

 

5.1 Cauchy's Mean Value Theorem 

Cauchy's mean value theorem is a generalization of the normal mean value theorem. This 

theorem is also known as the Extended or Second Mean Value Theorem. The normal mean 

value theorem describes that if a function f (x) is continuous in a close interval [a, b] where 

(a≤x ≤b) and differentiable in the open interval [a, b] where (a < x< b), then there is at least 

one point x = c on this interval, given as 

f(b) - f (a) = f' (c) (b-a) 

It establishes the relationship between the derivatives of two functions and changes in these 

functions on a finite interval. 

Let's consider the function f(x) and g(x) be continuous on an interval [a, b] differentiable on 

(a,b), and g'(x) is not equal to 0 for all 𝑥𝜖(𝑎, 𝑏). Then there is a point x = c in this interval 

given as  

𝑓(𝑏) − 𝑓(𝑎)

𝑔(𝑏) − 𝑔(𝑎)
=

𝑓 ′(𝑐)

𝑔′(𝑐)
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Proof of Cauchy's mean value theorem 

𝑓(𝑏) − 𝑓(𝑎)

𝑔(𝑏) − 𝑔(𝑎)
=

𝑓 ′ (𝑐)

𝑔′ (𝑐)
 

Here, the denominator in the left side of the Cauchy formula is not zero: 𝑔(𝑏) − 𝑔(𝑎)  ≠  0.  

If 𝑔(𝑏)  =  𝑔(𝑎), then by Rolle's theorem, there is a point 𝑑𝜖(𝑎, 𝑏), in which 𝑔′(𝑑)  =  0. 

Therefore, contradicts the hypothesis that 𝑔′(𝑥)  ≠  0 for all 𝑥𝜖(𝑎, 𝑏). 

Now, we apply the auxiliary function. 

𝐹 (𝑥)  =  𝑓 (𝑥)  +  𝜆𝑔(𝑥) 

And select λ in such a way to satisfy the given condition 

𝐹 (𝑎)  =  𝑓 (𝑏). we get, 

𝑓 (𝑎)  +  𝜆𝑔(𝑎)  =  𝑓 (𝑏)  +  𝜆𝑔(𝑏) 

 𝑓(𝑏) − 𝑓 (𝑎)  =  𝜆[𝑔(𝑎) −  𝑔(𝑏)] 

𝜆 =
𝑓(𝑏) − 𝑓 (𝑎)

𝑔(𝑎) −  𝑔(𝑏)
 

And the function F (x) exists in the form 

𝐹(𝑥) = 𝑓(𝑥)
𝑓 𝑏 − 𝑓  𝑎 

𝑔 𝑏 −  𝑔 𝑎 
𝑔(𝑥) 

The function F (x) is continuous in the closed interval (a≤x ≤b), differentiable in the open 

interval (a < x< b) and takes equal vales at the endpoints of the interval. So, it satisfies all the 

conditions of Rolle‟s theorem. Then, there is a point c exist in the interval (a,b) given as 

𝐹’ (𝑐)   =  0. 

It follows that 

𝑓 ′(𝑐) =
𝑓 𝑏 − 𝑓  𝑎 

𝑏 −  𝑎
𝑔′(𝑐) 

or  

𝑓(𝑏) − 𝑓(𝑎)

𝑔(𝑏) − 𝑔(𝑎)
=

𝑓 ′ (𝑐)

𝑔′ (𝑐)
 

By putting g (x) = x in the given formula, we get the Lagrange formula: 

𝑓 ′ 𝑐 =
𝑓 𝑏 − 𝑓  𝑎 

𝑏 −  𝑎
 

Cauchy‟s mean value theorem has the given geometric meaning. Consider the parametric 

equations give a curve 𝑋 =  𝑓 (𝑡) and 𝑌 =  𝑔 (𝑡), where the parameter 𝑡 lies in interval 

[a,b]. 

When we change the parameter t, the point of the curve in the given figure runs from 

𝐴(𝑓(𝑎). 𝑔(𝑎)) to 𝐵(𝑓(𝑏). 𝑔(𝑏)). 



61 

 

According to Cauchy‟s mean value theorem, there is a point (f(c), g(c)) on the curve, where 

the tangent is parallel to the chord linking of two ends A and B of the curve. 

 

Figure 5.1.1 Cauchy function 

 

Example 5.1.1 

Calculate the value of xfor the following function, which satisfies the Mean Value Theorem, 

F(x) = x
2
 + 2x + 2 

Solution: 

Given 

f(x) = x
2
 + 2x + 2 

According to Mean Value theorem, 

𝑓 ′ 𝑐 =
𝑓 𝑏 − 𝑓  𝑎 

𝑏 −  𝑎
 

𝑓 ′ 𝑐 = 2𝑐 + 2 

2𝑐 + 2 =
 1 + 2 + 1 −   4 + 4 + 1 

2 −  1
= −5 

2c = -7 

c = -7/2 

 

Example 5.1.2 

Calculate the value of x for the following function, which satisfies the Mean Value Theorem, 
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F(x) = x
2
 + 4x + 7 

Solution: 

Given 

f(x) = x
2
 + 4x + 7 

According to Mean Value theorem, 

𝑓 ′ 𝑐 =
𝑓 𝑏 − 𝑓  𝑎 

𝑏 −  𝑎
 

𝑓 ′ 𝑐 = 2𝑐 + 4 

2𝑐 + 4 =
 1 + 2 + 1 −   4 + 4 + 1 

4 −  1
= −7 

2c = -11 

C = -11/2 

 

5.2 Lagrange's Mean Value Theorem 

Lagrange's mean value theorem is also known as the mean value theorem or MVT or LMVT. 

It states that if a function f (x) is a continuous in a close interval [a, b] where (a≤x ≤b) and 

differentiable in open interval [a, b] where (a < x< b), then there is at least one point x = c on 

this interval, given as 

𝒇(𝒃)  −  𝒇 (𝒂)  =  𝒇′ (𝒄) (𝒃 − 𝒂) 

The above theorem is called first mean value theorem. It enables to express the increment of 

a function in the given interval through the derivative value at an intermediate point of the 

segment. 

Proof of Lagrange's mean value theorem 

Consider the auxiliary function given below 

F (x) = f (x) + x 

Here, we will select a number so that the condition 𝐹 (𝑎)  =  𝐹 (𝑏) is satisfied. Then 

𝑓 𝑎 + 𝜆𝑎 = 𝑓 𝑏 + 𝜆𝑏 

= 𝑓 𝑎 − 𝜆(𝑎 + 𝑏) 

𝜆 = −
𝑓 𝑏 − 𝑓  𝑎 

𝑏 −  𝑎
 

Then, the result, we get 

𝐹(𝑥) = 𝑓(𝑥)
𝑓 𝑏 − 𝑓  𝑎 

𝑏 − 𝑎
𝑥 
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The function F (x) is continuous in the closed interval (a≤x ≤b), differentiable in the open 

interval (a < x< b), and takes equal values at the endpoints of the interval. So, it satisfies all 

the conditions of Rolle's theorem. Then, a point c exist in the interval (a,b) given as 

F' (c) = 0. 

It follows that 

𝑓 ′ 𝑐 −
𝑓 𝑏 − 𝑓  𝑎 

𝑏 −  𝑎
= 0 

 

5.3 Summary 

 Cauchy's Mean Value Theorem, named after Augustin-Louis Cauchy, states that if two 

functions f(x) and g(x) are continuous on the closed interval [a,b] and differentiable on the 

open interval (a, b), then there exists a point c in (a, b) such that:  

    
𝑓(𝑏)−𝑓(𝑎)

𝑔(𝑏)−𝑔(𝑎)
=

𝑓 ′ (𝑐)

𝑔 ′ (𝑐)
 

 Lagrange's Mean Value Theorem, named after Joseph-Louis Lagrange, is a special case of 

Cauchy's Mean Value Theorem where the two functions f(x) and g(x) are the same 

function. 

 It states that if a function f(x) is continuous on the closed interval [a,b] and differentiable 

on the open interval (a,b), then there exists a point c in (a,b) such that:  

     𝒇(𝒃)  −  𝒇 (𝒂)  =  𝒇′ (𝒄) (𝒃 − 𝒂) 

Both theorems are fundamental in calculus and play significant roles in proving other 

theorems and solving various problems related to rates of change and functions. 

 

5.4 Keywords 

 Cauchy's mean value theorem 

 Lagrange's mean value theorem 

 

5.5 Self – Assessment Questions 

1. What does Cauchy's Mean Value Theorem state? 

2. Describe the conditions under which Cauchy's Mean Value Theorem can be applied. 

3. Provide an example of how Cauchy's Mean Value Theorem can be used to solve a 

problem involving two functions. 

4. Discuss a real-world scenario where Cauchy's Mean Value Theorem could be applied. 

5. State Lagrange's Mean Value Theorem. 
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6. Compare and contrast Lagrange's Mean Value Theorem with Cauchy's Mean Value 

Theorem. 

7. Explain the conditions under which Lagrange's Mean Value Theorem holds. 

8. How does Lagrange's Mean Value Theorem guarantee the existence of a point with a 

certain property? 

 

5.6 Case Study  

a) Describe how the estimation of the error of Taylor series approximations differs between 

Lagrange's form and Cauchy's form.  

b) Talk about the circumstances in which estimating the error in Taylor series 

approximations can be done using Lagrange's form and Cauchy's form.  

c) Give an example of a function and expansion point for which the error estimates produced 

by Lagrange's form and Cauchy's form differ noticeably.  

 

5.7 References 

1. Apostol, T. M. (1967). Calculus, Volume 1: One-Variable Calculus, with an 

Introduction to Linear Algebra (2nd ed.). John Wiley & Sons. 

2. Courant, R., & John, F. (1999). Introduction to Calculus and Analysis, Vol. 1 (2nd 

ed.). Springer. 
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CHAPTER - 6 

Maclaurin’s series of sinx., cosx., e
x
, log(l+x.), (l+x.)

m 

Learning Objectives: 

 Understand the concept of approximating functions using Maclaurin series 

 Apply the derived Maclaurin series to approximate values of the function. 

 Apply Maclaurin series to approximate functions and evaluate their values at specific 

points. 

 

Structure:
 

6.1.  Rolle‟s Theorem and The Mean Value Theorem 

6.2.  The Taylor Series 

6.3.  Maclaurin Expansion of e
 x
 

6.4  Summary 

6.5  Keywords 

6.6  Self-Assessment Questions 

6.7  Case Study 

6.8  References  

 

6.1 Rolle’s Theorem and The Mean Value Theorem 

The Mean Value Theorem is most significant theorems in calculus.  

Rolle‟s theorem states that if the output so differentiable function f are equal at the end points 

of an interval, then there must be an interior point c where f
′
(c)=0. Figure 6.1.1 illustrates this 

theorem. 

 

Figure 6.1.1: If a differentiable function f satisfies f(a) = f(b), then its derivative 

must be zero at some point(s) between a and b. 
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Theorem 6.1.1: Rolle’s theorem statement  

Let f be a continuous function over the closed interval [a,b] and differentiable over the open 

interval (a,b) such that f(a) = f(b). There then exists at least one c ∈ (a,b) such that f
′
(c)=0. 

Proof 

Let k = f(a) = f(b). 

We consider three cases: 

1. f(x)=k for all x∈(a,b). 

2. There exists x∈(a,b) such that f(x)>k. 

3. There exists x∈(a,b) such that f(x)<k. 

Case 1: Iff(x)=k for all x∈(a,b), then f
′
(x) = 0 for all x∈(a,b). 

Case 2: Since f is a continuous function over the closed, bounded interval [a,b], by the 

extreme value theorem, it has an absolute maximum. Also, since there is a point x∈(a,b) 

such that f(x)>k, the absolute maximum is greater than k. f
′
(c)=0. 

Case 3: The case when there exists a point x∈(a,b)such that f(x)<k is analogous to case2, with 

maximum replaced by minimum. 

Rolle`s Theorem is a special case of the Mean Value Theorem. In Rolle‟s theorem, we 

consider differentiable functions f that are zero at the endpoints. The Mean Value Theorem 

generalizes Rolle‟s theorem by considering functions that are not necessarily zero at the 

endpoints. 

 

Theorem 6.1.2: Mean Value Theorem  

If a function f(x) is continuous on the closed interval [a, b] and differentiable on the open 

interval (a, b), then there exists at least one point c in the open interval (a, b) such that the 

instantaneous rate of change of f at c is equal to the average rate of change of f over the 

interval [a, b]. Mathematically, this can be expressed as: 

𝑓 ′ 𝑐 −
𝑓 𝑏 −𝑓   𝑎 

𝑏− 𝑎
. 

Proof: 

The proof follows from Rolle's Theorem by introducing an appropriate function that satisfies 

the criteria of Rolle's Theorem. Consider the line connecting (𝑎, 𝑓(𝑎)) and (𝑏, 𝑓(𝑏)). Since 

the slope of that line is  

𝑓 𝑏 − 𝑓  𝑎 

𝑏 −  𝑎
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and the line passes through the point (𝑎, 𝑓(𝑎)) the equation of that line can be written as  

𝑦 =
𝑓 𝑏 − 𝑓  𝑎 

𝑏 −  𝑎
 𝑥 − 𝑎 + 𝑓(𝑎) 

 

Let g(x) denote the vertical difference between the point (r.f(z)) and the point (r, y) on that 

line. Therefore, 

𝑔 𝑥 = 𝑓 𝑥 −  
𝑓 𝑏 − 𝑓  𝑎 

𝑏 −  𝑎
 𝑥 − 𝑎 + 𝑓(𝑎)  

Since f is a differentiable function over (a, b), g is also a differentiable function over (a, b). 

Furthermore, since f is continuous over [a, b], g is also continuous over [a, b]. Therefore. g 

satisfies the criteria of Rolle's theorem. Consequently, there exists a point 𝑐 ∈ (a, b)  such that 

g′(c) = 0. Since  

we see that  

𝑔′ 𝑥 = 𝑓′ 𝑥 −
𝑓 𝑏 −𝑓   𝑎 

𝑏− 𝑎
, 

 

since g′(c) = 0, we conclude that  

𝑓′ 𝑐 −
𝑓 𝑏 −𝑓   𝑎 

𝑏− 𝑎
. 

 

6.2 The Taylor Series 

Let's assume we are given a function, f(x), and we will see if there exists a power series 

representation for that function. 

We begin by assuming that we can let f(x) be represented by a power series: 

 

But, we do not have the coefficients a0, a1, a2, ... and need to find a way to calculate them. 

As a first step, substituting x = c into our power series yields a0 = f(c). To get the next 

coefficient, a1, assuming we are able to differentiate our given function, we would obtain 

 

Substituting x = c into this expression gives us an expression for a1, 

 

So far, we have two of the coefficients, a0 and a1. Continuing with this process, provided that 

we are able to differentiate our given function again, we would obtain: 
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Again, substituting x = c into this expression yields 

 

Continuing with this process, we can find as many coefficients as we need, provided that we 

can differentiate our given function as many times as needed. In other words, if we can 

differentiate our function N times, we can calculate N power series coefficients, and calculate 

the series expansion coefficients up to N terms. If we can differentiate our function 

an infinite number of times, we can find a power series expansion with an infinite number of 

terms. 

The specific power series representation we introduced here derived what is known as 

the Taylor Series expansion. We will later discuss the conditions that are necessary for a 

function to have a Taylor series. 

 

We have now found a method to calculate power series expansions for functions who have a 

certain property: that they have derivatives at all orders. Functions that have derivatives at all 

orders, on some open interval, are referred to as analytic on that interval. Functions that are 

analytic on an interval have what is called a Taylor series expansion. 

 

Definition 6.2.1 

Suppose that a given function, f(x), is analytic on an open interval that contains the 

point x = c. The Taylor series expansion for f(x) at c is 

 

and the coefficients of the series, ak are given by 

 

Here we are using the notation f
(k)

 to denote the k
th

 derivative. 

The Taylor series obtained when we let c = 0 is referred to a Maclaurin series. 

When a Function Equals its Taylor Series 

It is possible to show that if a given function is analytic on some interval, then it is equal to 

its Taylor series on that interval. That is, on an interval where f(x) is analytic, 
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We will not prove this result here, but the proof can be found in most first year calculus texts. 

The proof involves 

 a derivation for an expression for the difference, or remainder, between f and 

the N
th

 order partial sum of a power series expansion, and 

 shows that if and only if the remainder goes to zero when N goes to infinity, the 

Taylor series converges to f(x). 

There are functions that are not equal to its Taylor series expansion. But for the purposes of 

this module, we will assume that all functions can be expanded as a Taylor series. 

 

6.3 Maclaurin Expansion of e
x
 

 

Example 6.3.1 

Find the Taylor series expansion for ex when x is zero, and determine its radius of 

convergence. 

Solution: 

Before starting this problem, note that the Taylor series expansion of any function about the 

point c = 0 is the same as finding its Maclaurin series expansion. 

Step 1: Find Coefficients 

Let f(x) = e
x
. To find the Maclaurin series coefficients, we must evaluate 

 

for k = 0, 1, 2, 3, 4, .... 

Because f(x) = e
x
, then all derivatives of f(x) at x = 0 are equal to 1. Therefore, all coefficients 

of the series are equal to 1. 

Step 2: Substitute Coefficients into Expansion 

By substitution, the Maclaurin series for e
x
 is 

 

Step 3: Radius of Convergence 

The ratio test gives us: 

 

Because this limit is zero for all real values of x, the radius of convergence of the expansion 

is the set of all real numbers. 
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Explanation of Each Step 

Step 1: 

Maclaurin series coefficients, ak are always calculated using the formula 

 

Where  f is the given function, and in this case is e
x
. In step 1, we are only using this formula 

to calculate coefficients. We found that all of them have the same value, and that value is one. 

Step 2: 

Step 2 was a simple substitution of our coefficients into the expression of the Taylor series 

given on the previous page. 

Step 3: 

This step was nothing more than substitution of our formula into the formula for the ratio test. 

Because we found that the series converges for all x, we did not need to test the endpoints of 

our interval. If however we did find that the series only converged on an interval with a finite 

width, then we may need to take extra steps to determine the convergence at the boundary 

points of the interval. 

 

Write the Maclaurin series expansion of the following functions:  (i) e
x
  (ii) sinx  (iii) cosx  

(iv) log (1 – x); -1 ≤ x < 1  (v) tan-1 (x) ; -1 ≤ x ≤ 1  

(i) e
x 

 

 

 

 

(ii) sin x  
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(iii) cos x 
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(iv) log (1 – x); -1 ≤ x < 1  

 

 

6.4 Summary 

 

 

 

 

6.5 Keywords 

 Rolle‟s Theorem 

 Taylor's theorem 
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 Taylor's Series 

 Maclaurin‟s series 

 

6.6 Self – Assessment Questions 

1. Who is Maclaurin and what is his series known for? 

2. What is a Maclaurin series? 

3. How does a Maclaurin series differ from a Taylor series? 

4. What is the general form of a Maclaurin Maclaurin series? 

5. What are some common examples of functions with known Maclaurin series 

expansions? 

6. How does the number of terms in a Maclaurin series affect its accuracy? 

7. How do you find the Maclaurin series expansion of a function? 

8. What is the significance of the Maclaurin series in calculus? 

9. Can any function be represented by its. What is the relationship between the 

Maclaurin series and the derivatives of a function at a point?  

 

6.7 Case Study 

The function ln(1+x) is to be approximated by the first three terms of its Maclaurin series. 

i.e.,  

 

Estimate the maximum value of x for which the approximation agrees with the exact value to 

3 decimal places.  

 

6.8 References 

1. Stewart, J. (2016). Calculus: Early Transcendentals (8th ed.). Cengage Learning. 

2. Larson, R., & Edwards, B. (2017). Calculus of a Single Variable (11th ed.). Cengage 

Learning. 
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CHAPTER -7 

L-Hospital’s Rule 

 

Learning Objectives: 

 Recognize when L-Hospital‟s Rule can be applied to evaluate limits of 

indeterminate forms. 

 Identify situations where applying L-Hospital‟s Rule simplifies limit calculations. 

 Use L-Hospital‟s  Rule to analyze the behaviour of functions at points of 

discontinuity or singularity. 

  

Structure: 

7.1 L-Hospital‟s rule 

7.2 What is L-Hospital‟s rule? 

7.3 When and How to Apply L-Hospital‟s Rule? 

7.4 Important Notes on L-Hospital‟s Rule 

7.5 Summary 

7.6 Keywords 

7.7 Self-Assessment Questions 

7.8 Case Study 

7.9 References  
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7.1 L- Hospital's Rule:- 

L-Hospital‟s rule (L-Hospital's rule) is a very important rule in calculus that is used to 

evaluate the limits that result in indeterminate forms (such as 0/0, ∞/∞, etc). These types of 

limits 

 Can't be calculated by direct substitution of the limit and/or 

 Can be evaluated but using a very long procedure. 

Let us see the L-Hospital‟s  Rule along with its statement, proof, and examples. Also, let us 

see some common misconceptions that may happen while the application of this rule. 

 

History 

L-Hospital‟s rule has various names such as L-Hospital‟s rule, L-Hospital‟s rule, Bernoulli's 

rule, etc, and is used to evaluate the limits of ind determinant forms. It was first introduced by 

a Swiss mathematician Johann Bernoulli in 1694 and hence it is known as Bernoulli's rule. It 

was later developed by a French mathematician Guillaume de L-Hospital‟s and hence it 

became popular with the name L-Hospital‟s  rule. 

Let us examine an example before going to see what this rule says: lim x → 2 (x
2
 - 4) / (x - 2). 

The first thing we usually do to evaluate a limit is substituting the limit. Let us see what 

happens when we apply the limit. We get (2
2
 - 4) / (2 - 2) = 0 / 0. This is an indeterminate 

form (as 0 / 0 is not defined). But let us try to simplify this limit in a different way. We know 

that x
2
 - 4 can be written as (x + 2) (x - 2) (using𝑎2 − 𝑏2). So lim x → 2 (x

2
 - 4) / (x - 2) = lim x 

→ 2 [(x + 2) (x - 2)] / (x - 2) = lim x → 2 (x + 2) = 2 + 2 = 4. Because of the factorization, we 

could evaluate this limit easily. 

Let us take another limit lim x → 0 (sin x) / x (whose actual value is 1 and this will be proved 

later) which also gives us an indeterminate form 0 / 0 but this cannot be evaluated easily as 

the other one. L-Hospital‟s Rule simplifies the process of finding limits that give 

indeterminate forms by the application of limit. Before going to learn it, let us just see what 

can be the other indeterminate forms. 

 

Indeterminate Forms: 

The indeterminate form is something that cannot be defined mathematically. Indeterminate 

forms can be of the form 0/0, ±∞/±∞, 0 × ∞, ∞ - ∞, 0
0
, 1

∞
, ∞

0
, etc. But the most common 

indeterminate forms that encounter while the application of L-Hospital's rule are 0/0 and 

±∞/±∞. 
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7.2 What is L-Hospital’s rule? 

L-Hospital‟s  Rule is a technique used to evaluate limits of indeterminate forms, particularly 

those involving fractions where both the numerator and denominator approach zero (or 

infinity) as the independent variable approaches a certain value. It's named after the French 

mathematician Guillaume de L-Hospital‟s 

.  

 

L-Hospital’s Rule Formula 

L-Hospital‟s  rule states that for any two continuous functions  f(x) and g(x), limx→a f(x)/g(x) 

is an indeterminate form, then lim x → a f(x) / g(x) = lim x → a f' (x) / g'(x), where 

 'a' is any real number, or ∞, or - ∞. 

 lim x → a f(x) / g(x) is an indeterminate form when x = a is applied. 

 f'(x) is the derivative of f(x) 

 g'(x) is the derivative of g(x) and g'(a) ≠ 0. 

 

7.3 When and How to Apply L-Hospital’s Rule? 

L-Hospital‟s rule should be applied only when lim x → a f(x) / g(x) leads to an indeterminate 

form by the direct application of limit. In such cases, we just differentiate the numerator and 

denominator (using derivative formula) separately and then apply the limit. Here are the same 

examples that were mentioned in the first section and are solved using L-Hospital‟s  rule very 

easily. 

 lim x → 2 (x
2
 - 4) / (x - 2) = 0/0 by the direct application of limit (x = 2). 

Using L-Hospital‟s  rule: 

lim x → 2 (x
2
 - 4) / (x - 2) = lim x → 2 (2x) / (1) = 2(2) = 4 

(this follows from power rule) 

 lim x → 0 (sin x) / x = 0 / 0 when x = 0 is applied. 

Using L-Hospital‟s  rule: 

lim x → 0 (sin x) / x = lim x → 0 (cos x) / 1 = cos 0 = 1 

(this follows from the derivative of sinx formula) 
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Sometimes, the limit still results in an indeterminate form even after the application of L-

Hospital‟s rule for one time. In that case, we can apply the same rule again and again as 

required. 

 

Applying L-Hospital’s Rule Multiple Times 

We can apply L-Hospital‟s rule as many times as required. Each time we apply the rule, we 

compute the derivatives of numerator and denominator functions separately and then apply 

the limit. But before each application of this rule, just make sure that the current limit leads to 

an indeterminate form. Here is an example. 

 

 

When can’t we apply L-Hospital’s Rule? 
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Application of L-Hospital‟s rule when the limit does NOT give an indeterminate form throws 

the wrong result. For example: 

limx→2(3x + 1) / (2x + 2) = (3(2) + 1) / (2(2) + 2) = 7/6 (correct answer) 

The limit didn't result in an indeterminate form and so we can't apply the L-Hospital's rule. 

Let us see what we get if we apply. We know that the derivatives of 3x + 1 and 2x + 2 are 3 

and 2 respectively. So the above limit after the application of rule becomes: 

limx→2(3/2) = 3/2 (incorrect answer) 

So do apply the limit first and make sure that an indeterminate form is resulted before 

applying the rule. 

 

Simplify the Fraction Before Each Application: 

When we apply L-Hospital‟s  rule for multiple times, simplify the rational expression each 

time before applying the limit every time. Otherwise, we result in a wrong answer. Here is an 

example. 

lim x → 1 (x
3
 - 1) / (x

2
 - 1) 

= lim x → 1 (3x
2
/2x) 

= lim x → 1 (3x / 2) 

= 3(1)/2 

= 3/2 (correct answer) 

But what happens if we don't simplify the fraction (in the third step) and try to apply L-

Hospital‟s  rule again? 

lim x → 1 (x
3
 - 1) / (x

2
 - 1) 

= lim x → 1 (3x
2
/2x) 

= lim x → 1 (6x / 2) 

= lim x → 1 3x 

= 3(1) 

= 3 (incorrect answer) 

Thus, simplify everything into the lowest terms before the application of the rule. 

 

7.4 Important Notes on L-Hospital’s Rule: 

 The limit of a fraction of two functions (that result is equal to the limit of the 

fraction of their derivatives. 

 Do not apply L-Hospital‟s rule if the limit is not resulting in an indeterminate form. 
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 We can apply L-Hospital‟s  rule as many times as required but before the application 

of each time, we should check whether the limit in that particular step is giving 

indeterminate form. 

 When we are trying to apply L-Hospital‟s  rule for the product f(x) · g(x), first, write 

it as fraction (i.e., either as f(x) / (1 / g(x)) or as g(x) / (1/ f(x)) ). 

 

 

 

 

 

 

7.5 Summary 

L'Hospital's Rule is a method for finding limits of indeterminate forms. It applies to limits 

that result in the forms 0/0 or ∞/∞. Indeterminate forms arise in calculus when the limit of an 

expression is not immediately clear due to conflicting tendencies of its components. 

Understanding these concepts is crucial for effectively solving complex limits and handling 

expressions that initially seem undefined.  
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7.6 Keywords 

 L-Hospital‟s  rule 

 Indeterminate Forms 

 

7.7 Self – Assessment Questions 

1. Explain how the form 0
0
 can be interpreted differently depending on the context of the 

functions involved. 

2. Define what an indeterminate form is. List the seven common indeterminate forms. 

3. Determine if the following limits are in indeterminate forms: 

 limx→0 sin(x)/x 

 limx→∞(1+1/x)
x
  

 limx→0xln(x)  

 

7.8 Case Study  

1. Consider the following limit problem that presents an indeterminate form: 

           limx→0(sin(3x)−3x)/x
3
. 

 

7.9 References 

1. Anton, H., Bivens, I., & Davis, S. (2010). Calculus Early Transcendentals (9th ed.). 

John Wiley & Sons. 

2. Larson, R., & Edwards, B. (2017). Calculus of a Single Variable (11th ed.). Cengage 

Learning. 
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CHAPTER - 8 

Tangents and Normal 

 

Learning Objectives: 

 Differentiate between tangents and normal based on their definitions and geometric 

properties. 

 Apply the point-slope form or slope-intercept form to derive equations of tangent 

and normal lines. 

 Interpret the geometric meaning of tangent and normal lines in relation to the curve's 

shape and direction. 

 

Structure: 

8.1 Tangents and normal 

8.2 Curvature 

8.3 Center of Curvature 

8.4 Chord of Curvature 

8.5 Radius of curvature at the origin by Newton‟s method 

8.6 Summary 

8.7 Keywords 

8.8 Self-Assessment Questions 

8.9 Case Study 

8.10 References  
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8.1 Tangents and normal:- 

The following Figure 8.1.1 shows the tangent and normal to a circle at a point on its 

circumference. 

 

Figure 8.1.1 The tangent and normal to a circle at a point 

Both the tangent and normal are straight lines of the tom y=mx+c and to find these lines we 

need two pieces of information, the gradient of the line and a point that the line passes 

through.  

The normal to a circle will always pass through the centre of the circle.  

The tangent and the normal are always at right angles to each other.  

 

Example 8.1.1   

Find the equation of the normal circle x
2
+y

2
=9 at the point (1,  8 ) on its circumference. By 

examining the equation of the circle you can see that the centre point is (0, 0). 

 

Figure 8.1.2 The tangent and normal to x
2
+y

2
=9 

To find the gradients use  
𝑦2−𝑦1

𝑥2−𝑥1
, where (𝑥1, 𝑦1) and (𝑥2, 𝑦2) are two points on the line 

So the gradient = 
 8−1

1−0
=  8 =M 
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So I've found one piece of information, now I need to use y-y1=M(x-x1) to find the equation 

of the line.  

I'll use the point (0, 0). I could use (1,  8) but I think (0, 0) would be easier!  

So y-0 =   8 (x-0)  

So y= 8x This is the equation of Normal.  

So y- 8 =-(1/ 8 )(x- 1)  

 8𝑦 + 𝑥 = 9 Equation of the tangent.  

8.2 Curvature  

Curvature is a numerical measure of bending of the curve. At a particular point on the curve, 

a tangent can be drawn. Let the positive x-axis and this line form an angle Ψ. The magnitude 

of the rate of change of Ψ with respect to the arc length s is therefore defined as curvature. 

∴Curvature at 𝑃 =  
𝑑Ψ

𝑑𝑠
  

It is obvious that smaller circle bends more sharply than larger circle and thus smaller circle 

has a larger curvature. Radius of curvature is the reciprocal of curvature and it is denoted by 

ρ. 

 

8.3 Center of Curvature: The center of the circle that most closely resembles the curve at a 

given location is known as the center of curvature. Put another way, the center of curvature 

would be the place at which you would draw a circle that matched the curve's curvature and 

just touched it. From a mathematical perspective, it is the point where the distance along the 

normal line, which is perpendicular to the curve at that point, equals the radius of curvature. 

The concave side of the curve is where the center of curvature is located. 

 

8.4 Chord of Curvature: The chord of curvature is a line segment connecting two points on 

the curve that are separated by a specified distance along the curve. This distance is typically 

the radius of curvature. The chord of curvature helps in approximating the curve by a straight 

line segment over a small interval, providing a linear approximation to the curve's behavior in 

that region. 
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Radius of curvature of Polar curves 𝒓 = 𝒇(𝚯) 
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8.5 Radius of curvature at the origin by Newton's method 

It is applicable only when the curve passes through the origin and has x-axis or y-axis as the 

tangent there. When x-axis is the tangent, then 

 

When y-axis is the tangent, then 
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8.6 Summary 

Tangent: A line that touches a curve at a single point without crossing through it. It represents 

the instantaneous direction of the curve at that point. • Normal: A line perpendicular to the 

tangent at a given point on a curve. Curvature measures how much a curve deviates from 

being a straight line at a particular point. It quantifies the rate at which the tangent direction 

changes as one moves along the curve. The center of curvature is the center of the circle that 

best approximates the curve at a given point. It lies on the normal to the curve at that point.  

 

8.7 Keywords 

 Tangents and Normal 

 Radius of Curvature 

 Polar Curve 

 

8.8 Self – Assessment Questions 

1. Define a tangent to a curve. 

2. What is the slope of the tangent to a curve at a given point? 

3. How is the equation of a tangent line to a curve at a given point derived?  

4. What is the normal line to a curve? 

5. How is the slope of the normal line related to the slope of the tangent line? 

6. What is the condition for a line to be normal to a curve at a given point?  

7. Can a curve have more than one tangent at a given point? 

8. Can a curve have more than one normal at a given point? 

9. How is the normal line equation derived at a point on a curve? 

10. How are tangents and normal useful in calculus and real-world applications? 

 

8.9 Case Study  

Riya is studying in class XI. Today her brother Mayank is teaching her the topic of Maths 

„Tangent and Normal‟. Mayank prepared the following notes on „Tangent and Normal‟ for 

Riya. 

(i) Slope of gradient of a line: If a line makes an angle q is called the slope of gradient of the 

line. 

(ii) Pictorial representation of tangent & normal  

(iii) Facts about the slope of aline: 
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     (a) If a line is parallel to the x-axis (or perpendicular to y-axis), then its slope is 0 (Zero).    

(b) If a line is parallel to the y-axis (or perpendicular x-axis), then its slope is 
1 

0
i.e., not         

defined. 

   (c) If two lines are perpendicular,  then product of their slope equals  –   1  𝑖. 𝑒. , 𝑚1 ×

 𝑚2 =  –  1.  Whereas, for two parallel lines, their slopes are equal 𝑖. 𝑒. , 𝑚1 =  𝑚2. (Here 

in both the cases, 𝑚1 and 𝑚2 represent the slope of the respective line. 

 

8.10 References 

1. Stewart, J. (2016). Calculus: Early Transcendentals (8th ed.). Cengage Learning. 

2. Larson, R., & Edwards, B. (2017). Calculus of a Single Variable (11th ed.). Cengage 
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CHAPTER - 9 

Tracing of Curves 

 

Learning Objectives: 

 Recognize the goal of curve tracing, which is to analyze and understand the 

behaviour of curves represented by functions or parametric equations. 

 Learn to identify and analyze key features of curves, such as intercepts, asymptotes, 

critical points, and inflection points. 

 Apply curve tracing techniques to sketch graphs of functions and parametric curves. 

 

Structure: 

9.1 Tracing of curves 

9.2 Linear Functions 

9.3 Polynomial Functions 

9.4 Summary 

9.5 Keywords 

9.6 Self-Assessment Questions 

9.7 Case Study 

9.8 References  
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9.1 Tracing of curves 

We can sketch any function using Curve Sketching but some functions can be quite tricky to 

sketch. Let‟s consider some examples of various different functions which we will sketch 

using the techniques of curve sketching. 

 

9.2 Linear Functions 

Sketching Linear Function is quite an easy task in curve sketching as we just need two points 

on the graph and the line joining those two points is the graph of a linear function. Let‟s 

consider an example: 

 

Example 9.2.1  

Draw the graph for the function, ℱ (x) = 2x + 3. 

Solution: 

For ℱ (x) = 2x + 3, 

Put x = 0 ⇒ ℱ (0) = 3 

and Put x = 1 ⇒ ℱ (1) = 5 

Now, draw a striaght line passing through the pionts (0, 3) and (1, 5) which is the chart of the 

linear function ℱ(x) = 2x+3. 

 

Figure 9.2.1 Striaght line passing through the pionts (0, 3) and (1, 5) on 𝓕(x) = 2x+3. 

  

9.3 Polynomial Functions 

Polynomial functions occur a lot in calculus, and it is essential to know how to sketch their 

graphs. We will look at a function and use the techniques studied above to infer the graph of 

the function. The general idea is to look for asymptomatic values, and where they are going, 
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and then find the critical points and draw a graph according to them. Let‟s see it through 

examples,  

 

Example 9.3.1  

Draw the graph for the given function,  

ℱ (x) = x
2 

+ 4 

Solution:  

We know that the domain of this function is all real numbers. This function will tend to 

infinity as we go towards large positive and negative values of x.  

Notice that 𝓕 (-x) = (-x)
2 

+ 4 = x
2 

+ 4 = 𝓕 (x). That is this function is even, so its graph must 

be symmetric about the y-axis.  

Now we know that graph goes to infinity and is symmetrical around the y-axis. Now, let‟s 

look for critical points.  

𝓕(x) = 2x = 0  

⇒ x = 0  

Thus, there is only one critical point which is x = 0. Checking the double derivative 𝓕”(x) = 

2. Since 𝓕”(x) > 0 for every x. So, the graph must be convex upward everywhere with 

minima at x = 0. Now we just need to know the value of the function at minima.  

𝓕 (0) = 4.  

Now we are ready to plot a graph.  

 

Figure 9.3.1 Minima of 𝓕 (x) = x
2 

+ 4 

. 
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Exponential Functions 

Exponential functions are an essential part of calculus and are commonly represented as 𝓕 

(x) = a
x
, where a is any positive constant and x can be any possible real number. To sketch 

the graph of Exponential Functions we need to check, the domain, range, and asymptotes. We 

also need to check whether the function is increasing or decreasing. If the base of the 

exponential function lies between 0 and 1 then it decreases in its domain otherwise it is an 

increasing function. 

Let‟s consider an example of sketching the exponential function. 

 

Example 9.3.2  

Draw the graph for the given function, ℱ (x) = 2
x
 – 1. 

Solution: 

The domain of this function is all real numbers. As x goes to negative infinity, the function 

approaches zero, and as x goes to infinity, the function approaches infinity. 

The base of the exponential function is 2, which is greater than one, so the function increases 

as x increases. 

To find critical points, we need to find where the derivative is zero. f'(x) = 2
x
ln(2). This 

derivative is zero only when x = 0. 

Thus, the critical point occurs at x = 0. To determine the concavity, we can find the second 

derivative of the function. f”(x) = 2
x
 ln(2). Since the second derivative is always positive, the 

graph must be convex upward everywhere. 

Now we just need to find the value of the function at the critical point. f(0) = 20 – 1 = 0. 

We can now use this information to sketch the graph of the exponential function. 

 

Figure 9.3.2 Graph of 𝓕 (x) = 2
x
 – 1 
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Logarithmic Functions 

We know that logarithmic functions are inverse of exponential functions. The function y = 

logbx is the inverse of y = b
x
. The graph of the exponential function is given below. We also 

know that the graph of an inverse of a function is basically a mirror image of the graph in y = 

x. So we can derive the shape of the graph of log function from the given graph of the 

exponential function.  

The mirror image of the Logarithmic function is the exponential function both of them are 

shown in the image below, 

 

Figure 9.3.3 Graph of 𝓕 (x) = logx 

 

Let‟s see an example of graphic logarithmic functions.  

 

Example 9.3.3 

Plot the graph for log10x + 5.  

Solution:  

We can see that the function is f(x) = log10x + 5. 

The graph of this equation will be shifted 5 units in the upwards direction. 

 

 Figure 9.3.4 Graph of 𝓕 (x) = log10x + 5 
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9.4 Summary 

Tracing curves involves analyzing the behavior of functions and their graphs, including 

understanding key features such as intercepts, asymptotes, local extrema, concavity, and end 

behavior. Tracing curves typically involves plotting points, determining critical points and 

intervals, analyzing derivatives and second derivatives, identifying symmetries, and 

understanding transformations. Linear functions are functions that can be represented by a 

straight line when graphed on a Cartesian coordinate system. A linear function has the form 

f(x) = mx + b, where m represents the slope of the line and b represents the y-intercept. 

Polynomial functions are functions that consist of terms involving powers of a variable 

multiplied by coefficients. Polynomial functions can have multiple terms and can exhibit 

various behaviors such as oscillations, local maxima and minima, and end behavior 

determined by the highest degree term. 

 

9.5 Keywords 

 Tracing of curve 

 Polynomial Functions 

 Logarithmic Functions 

 

9.6 Self – Assessment Questions 

1. What is meant by "tracing a curve"? 

2. What are some common methods used to trace curves? 

3. What role do derivatives play in tracing curves? 

4. How does the sign of the derivative help in understanding the behavior of a curve? 

5. What information does the first derivative provide about a curve? 

6. How do critical points help in tracing curves? 

7. What does the second derivative reveal about the curve? 

8. What is the significance of inflection points in tracing curves? 

9. How do asymptotes affect the tracing of curves? 

10. Can technology aid in tracing curves, and if so, how? 

 

9.7 Case Study  

1. If the curve depicts the pace at which a heated object cools over time, explain how 

the curve varies as the object gets closer to room temperature.  
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2. List the months with the highest and lowest sales figures. How did the curve help 

you determine these points?  
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CHAPTER -10 

Concavity and Convexity 

 

Learning Objectives: 

 Recognize the geometric properties of concave and convex functions, including their 

shapes and curvature. 

 Understand the criteria for determining points of inflection, such as changes in 

concavity. 

 Apply concavity and convexity to solve optimization problems and analyze the 

behaviour of functions in various contexts. 

 

Structure: 

10.1 Introduction 

10.2 Curve Sketching Definition 

10.3 Summary 

10.4 Keywords 

10.5 Self-Assessment Questions 

10.6 Case Study 

10.7 References  
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10.1 Introduction: 

In the realm of Cartesian coordinates, understanding the concavity and convexity of curves 

provides essential insights into their overall shape and behaviour. 

 Concavity: A curve is said to be concave if it curves downward like the interior of a 

bowl. This is characterized by a negative second derivative of the curve with respect 

to its independent variable. 

 Convexity: Conversely, a curve is termed convex if it curves upward, resembling 

the outer surface of a bowl. This is indicated by a positive second derivative of the 

curve. 

Convex functions appear in many problems in pure and applied mathematics. They play an 

extremely important role in the study of both linear and non linear programming problems. It 

is very important in the study of optimization. The solutions to these problems lie on their 

vertices.  

The theory of convex functions is part of the general subject of convexity, since a convex 

function is one whose epigraph is a convex set. Nonetheless it is an important theory which 

touches almost all branches of mathematics. Graphical analysis is one of the first topics in 

mathematics which requires the concept of convexity. Calculus gives us a powerful tool in 

recognizing convexity, the second-derivative test. Miraculously, this has a natural 

Curve Sketching as its name suggests helps us sketch the approximate graph of any given 

function which can further help us visualize the shape and behaviour of a function 

graphically. Curve sketching isn‟t any sure-shot algorithm that after application spits out the 

graph of any desired function but it is an active role approach for a visual representation of a 

function that needs analysis of various features of graphs, such as intercepts, asymptotes, 

extreme, and concavity, to gain a better understanding of how the function behaves. 

In this article, we will explore all the fundamentals of curve sketching and its solved 

examples. Other than that we will also explore all the aspects in detail which will help us 

analyze and sketch the function more efficiently. 
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Figure 10.1.1.: Convex Function 

 

Convexity of the curve is a reflection of a diminishing MRS (Marginal Rate of Substitution), 

which simply means that, as consumption of any one good increases more and more, the 

individual will prefer to sacrifice lesser and lesser amounts of consumption of the other good, 

that is 
𝑑2𝑦

𝑑𝑥 2  ≥ 0. This implies that slope of the tangent to the curve declines as we move down 

the indifference curve. This implies that slope of the tangent to the curve declines as we move 

down the indifference curve  

 

Figure 10.1.2 Slope of an Indifference Curve 

 

 

Figure 10.1.3 Diminishing MRS 
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10.2 Curve Sketching Definition 

Curve Sketching is a collection of various techniques which can be used to create the 

approximate graph of any given function. That can help us analyze different features and 

behaviour of the graph. Curve Sketching involves analysis of many aspects of a given 

function such as changes in function as input changes, maximum and minimum values, 

intercepts, domain, range, asymptotes, etc. Curve Sketching is used to visualize and 

understand the shape and behaviour of any given function. 

 

 

Figure 10.2.1 Curve Sketching 

 

 

Figure 10.2.2 Curve Sketching 
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Graphing Basics 

To create a graph of any given function, we need to plot some points such as intercepts, 

critical points, and some regular points which can help us trace the graph on the cartesian 

plane. Let‟s further understand these basics in detail as follows: 

 

Plotting Points 

We can easily plot various different points of any function on the graph by just using random 

input and their outputs as the coordinates. This random plot of points helps us connect the 

final graph after all the necessary calculations are done. For example, we need to graph the 

function f(x) = e
x
, so just putting x = loge3 we get the output f(loge3) = 3. Now, we can 

(loge3, 3) as a point on the graph.  

 

Domain and Range 

First, analyze the function (f) to check for its domain  and obtained   points where the 

function's value  becomes undefined or is discontinuous.  For example:  1/x is not defined at 

x = 0. Log(x) is defined only at positive values of x.  

 

The domain of a function f is the set of all values x for which f(x) is defined. 

The range of a function f is the set of all values that f(x) takes on as a runs through the 

domain of f. That is, it is the set of all y values for which there is an a value such that 

y = f(x). 

For many functions, the domain is easy to determine. Often, all we have to do is look for 

which z cause a problem when evaluating f(x); those x are not in the domain of f, and the 

domain is everything else. 

For example, suppose f(x)= 5/x(x-1). To compute f(x) we have to multiply x times x-1. This 

part causes no trouble: we can multiply any two number together. Then, we divide 5 by the 

product just calculated. This goes well, unless that product is zero. That is, the only z values 

that cause trouble are those for which 

x(x-1)=0. 

Since the left hand side of this equation is factored, we see that the only for which x(x-1) = 0 

are x = 0 and 1. Thus, those are the only two values not in the domain of f, and so the domain 

of f is everything else. We might say: the domain of ƒ is all x≠0, x≠1. 
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10.3 Summary 

Concavity and convexity are concepts used to describe the shape of curves and surfaces. 

They are fundamental in calculus and mathematical analysis for understanding the behavior 

of functions and optimizing problems. Curve sketching is the process of visualizing and 

understanding the behavior of a function by examining its graph. The main objective of curve 

sketching is to identify key features of the graph such as intercepts, asymptotes, symmetry, 

intervals of increase/decrease, local extrema, concavity, and points of inflection. 

 

10.4 Keywords 

 Concavity 

 Convexity 

 Domain and Range 

 

10.5 Self – Assessment Questions 

1. Define concavity and convexity in terms of curves. 

2. What is a concave-up (convex) curve? 

3. What is a concave-down (concave) curve? 

4. How can you determine concavity or convexity using the second derivative test? 

5. What does it mean for a function to be concave or convex on an interval? 

6. Can a function be both concave and convex on the same interval? 

7. How do inflection points relate to concavity and convexity? 

8. What is the significance of the sign of the second derivative in determining concavity 

or convexity? 

9. How can you sketch a curve based on its concavity and convexity? 

 

10.6 Case Study  

1. Discuss how the concavity of the function helps in solving this optimization problem. 

2. Consider a consumer deciding how much of two goods, 𝑥 and 𝑦, to purchase with a 

fixed income. The consumer's utility function is given by 𝑈(𝑥, 𝑦), which is concave. 
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CHAPTER -11 

Asymptotes 

Learning Objectives: 

 Recognize the different types of asymptotes, including vertical, horizontal, and 

oblique asymptotes. 

 Identify the equations and properties of vertical, horizontal, and oblique asymptotes. 

 Apply knowledge of asymptotes to analyze the behaviour of functions near points of 

discontinuity or singularity. 

 

Structure: 

11.1 Finding Intercepts and Asymptotes 

11.2 Local Extrema and Inflection Points 

11.3 Calculating Slope and Concavity 

11.4 Summary 

11.5 Keywords 

11.6 Self-Assessment Questions 

11.7 Case Study 

11.8 References  
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11.1 Finding Intercepts and Asymptotes 

Intercepts are the points where the graph cuts the coordinate axis and to find the x-intercept, 

we put y = 0 and solve for x. Similarly, to find the y-intercept, we put x = 0 and solve for y. 

Asymptotes are lines that the graph approaches but do not intersect. There are three types of 

asymptotes which are as follows:  

 Horizontal Asymptote 

 Vertical Asymptote 

 Slant Asymptote 

Horizontal asymptotes occur when the function approaches a constant value as x approaches 

infinity or negative infinity. Vertical asymptotes occur when the function approaches infinity 

or negative infinity as x approaches a specific value. Slant asymptotes occur when the degree 

of the numerator is one more than the degree of the denominator. 

To calculate Horizontal Asymptote, we need to calculate the limit of a function at infinity, 

and vertical asymptotes are those points for which functions become not defined i.e., the 

denominator becomes 0. 

 

Example 11.1.1  

Find Intercept and Asymptote for f(x) = (2x + 1) / (x – 3). 

Solution: 

To find the x-intercept, we set f(x) = 0 and solve for x: 

⇒ (2x + 1) / (x – 3) = 0 

⇒ 2x + 1 = 0 (x ≠ 3) 

⇒ x = -1/2 

Therefore, the x-intercept of the function is at (-1/2, 0). 

To find the y-intercept, we set x = 0 and solve for f(x): 

⇒f(0) = (2(0) + 1) / (0 – 3) = -1/3 

Therefore, the y-intercept of the function is at (0, -1/3). 

The vertical asymptote occurs at x = 3, since the denominator of the function becomes zero at 

that point. 

To find the horizontal asymptote, we need to examine the behaviour of the function as x 

approaches infinity or negative infinity. We can do this by dividing the numerator and 

denominator by the highest power of x in the function: 

f(x) = (2x + 1) / (x – 3) = (2 + 1/x) / (1 – 3/x) 
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As x becomes very large or very small, the term 1/x becomes insignificant compared to the 

other terms in the numerator and denominator, so we can ignore it: 

f(x) ≈ 2 / 1 = 2 (as x → ±∞) 

Therefore, the horizontal asymptote of the function is y = 2. 

 

11.2 Local Extrema and Inflection Points 

Local extrema are those points of the function or graph for which there is no such value of 

function greater or smaller than the local extrema i.e., no other point in the neighbourhood of 

the local extrema has a more extreme value than it.  

To find out the maxima and minima in any function, we need to find the critical points. 

Critical points of the function are defined as the points where either slope of the function is 

not defined or the slope is 0 i.e., f'(x) = 0. 

After getting the values of critical points, check the second derivative of the function at those 

critical points. If f”(x) > 0 for some critical point x=k, then f(k) is the local minima of the 

function, and if f”(x) < 0 for some critical point x = k, then f(k) is the local maxima of the 

function.  

If f”(x) = 0 for some critical point x = k then x = k is the Point of Inflection or Inflection 

Point of the function. 

 

11.3 Calculating Slope and Concavity 

The slope is the measure of inclination from the positive x-axis and it tells us whether the 

graph is increasing (Slope>0) or decreasing (Slope<0). To find the slope of any given 

function, we differentiate the given function w.r.t to the dependent variable and substitute the 

value for which we need to calculate the slope. 

Concavity is the measure of the curve which tells us whether the graph is concave up or 

concave down i.e., the direction of curvature of the graph. To calculate the concavity, we use 

the second derivative w.r.t dependent variable of the function. If the second derivative is 

positive, then the function is concave up, and if the second derivative is negative, then the 

function is concave down. 

 

Example 11.3.1  

Find the slope and concavity of f(x) = x
3
 – 3x

2
 + 2x. 

Solution: 

f(x) = x
3
 – 3x

2
 + 2x 
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⇒ f'(x) = 3x
2
 – 6x + 2 

To find the slope of the function at a specific point, we substitute the value of x in the 

derivative: 

f'(-1) = 3(-1)^2 – 6(-1) + 2 = 11 

Therefore, the slope of the function at x = -1 is 11. 

Obtain. the. function's concavity, 

f.”(x.) = 6x – 6 

To find the points where the concavity changes, we set f”(x) = 0 and solve for x: 

⇒f”(x) = 6x – 6 = 0 

⇒ x = 1 

Therefore, the function changes from concave down to concave up at x = 1. 

Here, (1, 0) is the inflection point. 

Inflection Point: Inflection point is the point where the concavity changes i.e., the second 

derivative of function = 0.  

 

11.4 Summary 

An asymptote is a line or curve that a function approaches but never reaches as the 

independent variable approaches a certain value or infinity. Vertical asymptotes occur when 

the function approaches positive or negative infinity as the independent variable approaches a 

certain value. Horizontal asymptotes occur when the function approaches a constant value as 

the independent variable approaches positive or negative infinity. Oblique (or slant) 

asymptotes occur when the function approaches a straight line as the independent variable 

approaches positive or negative infinity. To find asymptotes, analyze the behavior of the 

function as approaches certain values or infinity. For vertical asymptotes, look for values of a 

that make the denominator of a rational function zero but not the numerator. For horizontal 

and oblique asymptotes, analyze the end behavior of the function. Symmetry refers to a 

property where one part of an object mirrors or reflects the other part. 

 

11.5 Keywords 

 Asymptotes 

 Local Extrema 

 Inflection Points 
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11.6 Self – Assessment Questions 

1. What is an asymptote? 

2. How can you identify vertical asymptotes? 

3. What is the significance of a horizontal asymptote? 

4. Can a curve have more than one horizontal asymptote? 

5. How are oblique (slant) asymptotes different from horizontal and vertical 

asymptotes? 

6. Can a curve intersect its asymptotes? 

7. What are the conditions for a rational function to have an oblique asymptote? 

8. Can exponential or logarithmic functions have asymptotes? 

9. How do you find the equations of asymptotes? 

 

11.7 Case Study  

1. In factories, the quantity, x, of an item produced determines its cost of production. 

The formula C(x) = 125x + 2000 provides the cost for a specific factory. This shows 

that there is an initial setup cost of $2000 for the production floor and that each item 

costs $125. The cost function is divided by the quantity, x, to determine the average 

cost of producing x products. In this instance, the typical cost function is 

𝑓 𝑥 = (125𝑥 + 2000)/𝑥 

  Many other applications require finding averages in a similar way. Written without a 

variable in the denominator, this function will contain a negative integer power. 

2.      A manufacturer needs to be paid $50,000 to set up a production line before a 

company can make the next big toy. In addition, they must pay labor and raw 

materials costs of $5 per item. For the average cost to create x things, write a 

function. After that, explain what happens to the average cost when the firm 

produces a big quantity of toys. 
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CHAPTER -12 

Parametric Equations 

Learning Objectives: 

 Understand the advantages of using parametric equations to represent curves and 

trajectories in various contexts. 

 Recognize the graphical representation of parametric curves and their geometric 

properties. 

 Apply knowledge of parametric equations to analyze the behaviour of curves 

represented parametrically. 

Structure: 

12.1 Introduction to Parametric Equations 

12.2 Parameterizing a Curve 

12.3 Length of Parametric Curves 

12.4 Summary 

12.5 Keywords 

12.6 Self-Assessment Questions 

12.7 Case Study 

12.8 References  

12.1 Introduction to Parametric Equations: 

Parametric equations are a way of representing curves or surfaces using one or more 

independent parameters. Rather than expressing the relationship between variables directly, 

parametric equations describe how each coordinate of a point on the curve varies as a 

function of one or more parameters. The motivation behind parametric equations often arises 

from situations where describing a curve or surface solely in terms of one variable isn't 

sufficient. For example, consider the motion of a particle in space, where both the x, y, and z 

coordinates change over time. Parametric equations allow us to track each coordinate's 

motion independently by introducing parameters that represent time or other variables. 

Examples of Curves Represented Parametrically: 

1. The Unit Circle: 

Parametric equations for the unit circle (a circle with radius 1 centered at the origin) 

are given by: 

x = cos(t) 

y = sin(t) 
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Here, t ranges from 0 to 2π. As t varies, the x and y coordinates trace out the points 

along the circumference of the circle. This representation provides a clear 

understanding of how the coordinates change as the angle t varies. 

2. The Ellipse: 

The parametric equations for an ellipse centered at the origin with semi-major axis a along 

the x-axis and semi-minor axis b along the y-axis are: 

x = a cos(t)  

y = b sin(t) 

Here, t again ranges from 0 to 2π. These equations describe how the coordinates of points on 

the ellipse change as the parameter t varies. By adjusting the values of a and b, we can 

generate ellipses of different sizes and eccentricities. 

These examples illustrate how parametric equations offer a powerful way to describe 

geometric shapes and trajectories by breaking them down into simpler, more manageable 

components. They allow us to study and manipulate complex curves and surfaces with 

greater precision and flexibility than traditional Cartesian equations. 

12.2 Parameterizing a Curve 

Parameterizing a curve essentially means representing it in terms of one or more parameters. 

This allows us to describe each point on the curve using the parameter(s), enabling us to 

analyze and manipulate the curve more easily. There are various techniques for 

parameterization, including using trigonometric functions, polynomials, or a combination of 

both. 

1. Trigonometric Functions: 

• Trigonometric functions like sine and cosine are commonly used for 

parameterization, especially for circular or periodic curves. For example, consider the unit 

circle x
2
 + y

2
 = 1. It can be parameterized as x = cos(t) and y = sin(t), where t ranges from 0 

to 2π. This parameterization traces out the circle as t varies. 

2. Polynomials: 

Polynomials are used to parameterize curves with more complex shapes. For instance, a line 

segment between two points (x1, y1) and (x2, y2) can be parameterized as y = x1 + (x2 − x1)t 

and y = y1 + (y2 - y1)t, where t (y2-y1)t, ranges from 0 to 1. 

• Higher degree polynomials can be used for more intricate curves. For example, a parabola y 

= ax
2
 + bx + c can be parameterized by letting a = t and y = at

2
 + bt + c. 
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3. Combination of Trigonometric Functions and Polynomials: 

Sometimes, a combination of trigonometric functions and polynomials is used for 

parameterization. For example, the path of a projectile can be parameterized using both linear 

and quadratic functions to account for both horizontal and vertical motions. 

4. Examples: 

Circular Helix: Parameterized as x = cos(t), y = sin(t), and z = t. This traces out a helix in 3D 

space. 

Bezier Curves: Parameterized using Bernstein polynomials. For example, a quadratic Bezier 

curve between points P0 and P2 with control point P1 can be parameterized as B(t) = (1− t)
2 

P0 

+ 2t(1 − t)P1 + t
2
 P2. 

• Elliptic Curve: Parameterized as x = a a cos(t) and y = b sin(t), where a and b are constants 

determining the shape of the ellipse. 

These examples demonstrate how different parameterizations can be used to describe various 

types of curves, from simple lines to complex geometric shapes. The choice of 

parameterization depends on the specific characteristics of the curve and the requirements of 

the problem at hand. 

12.3 Length of Parametric Curves 

The arc length formula for parametric curves allows us to calculate the length of a curve 

defined by parametric equations. Parametric curves are defined by two functions, typically 

denoted as (𝑡) and (𝑡), where 𝑡 is the parameter that traces out the curve. 

 The arc length formula for a parametric curve is given by: 

 

Where: 

S represents the arc length of the curve. 

a and b are the limits of the parameter t over which the curve is traced. 

dx/xt and dy/dt are the derivatives of x(t) and y(t) respectively with respect to t. 

Derivation: 

To understand the significance of this formula, let's briefly derive it. 

Consider a small arc length ds on the curve defined by the parametric equations x(t) and y(t). 

By the Pythagorean theorem, we have: 

ds
2
 = dx

2
 + dy

2
 

Where dx and dy are infinitesimal changes in x and y respectively. 
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Dividing both sides by dt
2
 and taking the square root, we get: 

 

Integrating both sides over the interval [a, b], we obtain the arc length formula. 

Applications: 

1. Engineering and Design: In architecture, civil engineering, and design, 

understanding the length of curves is crucial for tasks such as designing roadways, 

pipelines, and bridges. 

2. Physics and Mechanics: In physics, the trajectory of a particle in space can be 

described parametrically, and calculating its arc length helps in understanding its 

motion. 

3. Computer Graphics and Animation: In computer graphics, parametric curves are 

used to define paths for animations and simulations. Calculating arc lengths helps in 

creating realistic motion. 

4. Robotics and Motion Planning: In robotics, understanding the length of curves is 

essential for motion planning, obstacle avoidance, and path optimization. 

5. Biology and Medicine: In biological studies, parametric curves can represent 

biological structures such as blood vessels or organ surfaces, and calculating arc 

lengths aids in analyzing their shapes and properties. 

In essence, the arc length formula for parametric curves is a powerful tool with wide-ranging 

applications in various fields where understanding the length of curves is essential. 

12.4 Summary 

1. Definition: 

 Parametric equations are a set of equations that express the coordinates of a point as 

functions of one or more independent variables, called parameters. 

 Each coordinate (such as x and y in two dimensions or x, y, and z in three 

dimensions) is given as a function of the parameter(s). 

 Parametric equations are often used to describe curves, trajectories, and motion in 

both mathematics and physics. 

2. Form: 

In two dimensions, parametric equations are typically written as: 

x = f(t) 

y = g(t) 
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In three dimensions, parametric equations can be written as: 

x = f(t) 

y = g(t) 

z = h(t) 

Here, t is the parameter, and f(t), g(t), and h(t) are functions that describe the motion or 

trajectory of the point. 

3. Advantages: 

 Parametric equations are particularly useful for describing complex curves and motion 

that cannot be easily expressed by a single function y = f(x).  

 They allow for a more flexible representation of curves, including curves with 

multiple branches, loops, and cusps. 

12.5 Keywords 

 Parametric Equations 

 Parameterizing a Curve 

12.6 Self – Assessment Questions 

1. What are parametric equations? 

2. How do parametric equations represent curves? 

3. What is the purpose of introducing parameters in equations? 

4. Can parametric equations describe curves that cannot be expressed by Cartesian equations? 

5. How do you eliminate the parameter to express a curve in Cartesian form? 

6. What is the significance of the parameter in parametric equations? 

7. How are parametric equations used to describe motion in physics? 

8. Can parametric equations represent curves in higher dimensions? 

9. What are the advantages of using parametric equations over Cartesian equations in certain 

situations? 

10. How are parametric equations graphed or plotted? 

12.7 Case Study  

1. Find the position, point (x, y), of a projectile 

    A golf ball is hit on level ground with an initial velocity of 55 m/s at an angle 

of 40∘ with respect to the horizontal. Where will the ball be 2 seconds later? 

2. Find the maximum height of a projectile. 

    A golf ball is hit on level ground with an initial velocity of 55 𝑚/𝑠 at an angle 

of 40∘ with respect to the horizontal. What is the maximum height of the golf ball? 
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CHAPTER -13 

Multiple Integrals and Change of Order of Integration 

 

Learning Objectives: 

 Define what multiple integrals are and their significance in calculus and 

mathematical analysis. 

 Learn techniques for evaluating multiple integrals, including iterated integration and 

using appropriate coordinate systems (rectangular, polar, cylindrical, spherical). 

 Understand the concept of changing the order of integration in double and triple 

integrals. 

Structure: 

13.1 Introduction to Multiple Integrals 

13.2 Change of Order of Integration 

13.3 Applications of Multiple Integrals 

13.4 Summary 

13.5 Keywords 

13.6 Self-Assessment Questions 

13.7 Case Study 

13.8 References  

13.1 Introduction to Multiple Integrals: 

Integration is the inverse process of differentiation. In the differential calculus, we are given a 

function and we have to find the derivative or differential of this function, but in the integral 

calculus, we are to find a function whose differential is given. Thus, integration is a process 

which is the inverse of differentiation. Let
𝑑

𝑑𝑥
𝐹 𝑥 = 𝑓(𝑥). Then we write 𝑓 𝑥 𝑑𝑥 =

𝐹 𝑥 + 𝐶. These integrals are called indefinite integrals or general integrals; C is called 

constant of integration. All these integrals differ by a constant. 

From the geometric point of view, an indefinite integral is collection of family of curves, 

each of which is obtained by translating one of the curves parallel to itself upwards or 

downwards along the y-axis. 

Some properties of indefinite integrals are as follows: 

1.  

2.  𝑘. 𝑓 𝑥.  𝑑𝑥 = 𝑘.  𝑓. (𝑥. )𝑑𝑥 
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More generally, if 𝑓1, 𝑓2 , … … . , 𝑓𝑛  are functions and 𝑘1, 𝑘2, … . . , 𝑘𝑛   are real numbers. Then 

 

 

Some standard integrals: 

(i)       Particularly,  

(ii)        

(iii)       

(iv)        

(v)          

(vi)         

(vii)      

(viii)        

(ix)        

(x)     

(xi)        

(xii)      

(xiii)    

(xiv)    

(xv)      

(xvi)    
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Integration by Partial Fraction: A rational fraction is the ratio of the form 
𝑃(𝑥)

𝑄(𝑥)
  where P(x) 

and Q(x) are polynomials in x and Q(x)  0. If the degree of the polynomial P(x) is greater 

than the degree of the polynomial Q(x), then we may divide P(x) by Q(x) so that 
𝑃(𝑥)

𝑄(𝑥)
=

𝑇 𝑥 +
𝑃1(𝑥)

𝑄(𝑥)
    where T(x) is a polynomial in x and degree of P1(x) is less than Q(x). T(x) is a 

polynomial can be easily integrated. 

𝑃1(𝑥)

𝑄(𝑥)
can be integrated by expressing 

𝑃1(𝑥)

𝑄(𝑥)
 as the sum of partial fractions of the following 

types: 

(a)    

(b)  

(c)  

(d)  

(e)   

where  cannot be factorize further into linear fraction. 

 

Integration by Substitution: In this method we change the variable to some other variable. 

When the integrand involves some trigonometric functions, we shall be using some well-

known identities to find the integrals. Using substitution technique, we obtain the following 

standard integrals: 

(a)  

(b)  

(c)  

(d)  
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Integrals of Some Special Functions: 

(a)                     

 (b)  

(c)                               

 (d)  

(e)                 

(f)   

 

Integration by Parts: For the given function f(x) and g(x), 

 

We must take proper care to choose the first function and second function clearly. We must 

choose that function as the second function whose integral is well-known to us. 

  

 

Some Special Type of Integrals: 

(a)  

(b)  

(c)  

 

Integrals of the types  or  

(a) These type of integrals are transformed into standard form by expressing 
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(b) Integrals of the types  or  are transformed into 

standard form by expressing  

           

where A and B are determined by comparing coefficients on both sides. 

 We have already defined  as the area of the region bounded by the 

curve ,  the x-axis and the ordinates x = a and x = b. Let x be a 

given point in [a, b], then  represents the area function A(x). 

 First Fundamental Theorem of Integral Calculus: Let the area function be defined 

by  for all  where f. be assumed to. be continuous on. 

[a,.b], then  for all . 

 Second Fundamental Theorem of Integral Calculus: Let f be a continuous function 

of x defined on the closed interval ]a, b] and let F be another function such 

that  for all x in the domain of f, 

then  

This is called the definite integral of f over the range [a, b] were a and b are called the limits 

of integration,  being the lower limit and  the upper limit.   

Multiple integrals extend the concept of integration from one dimension to multiple 

dimensions. While single integrals deal with functions of one variable over a one-

dimensional interval, multiple integrals handle functions of multiple variables over regions in 

two or more dimensions. 

Definition and Concept of Multiple Integrals: A multiple integral is an extension of a 

single integral to functions of more than one variable. In essence, it represents the process of 

finding the signed volume (for double integrals) or the signed volume or hypervolume (for 

triple integrals) of a region in space bounded by a surface or surfaces. 

 

For a double integral over a region R in the xy-plane of a function f(x, y), it's represented as: 
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Here, dA represents the infinitesimal area element in the xy-plane. Similarly, for a triple 

integral over a region E in three-dimensional space of a function f(x, y, z), it's represented as: 

 

Where dV represents the infinitesimal volume element in three-dimensional space. 

Comparison with Single Integrals: 

Single integrals compute the area under a curve in one dimension, while multiple integrals 

compute the volume under a surface or hyper volume under a hyper surface in two or more 

dimensions. Just as single integrals have definite and indefinite forms, multiple integrals can 

also be definite or indefinite. 

In essence, single integrals are like slicing a shape into infinitely thin slices along one 

direction and summing up the areas of these slices, whereas multiple integrals involve slicing 

a shape into infinitesimally small pieces in multiple directions and summing up the volumes 

of these pieces. 

 

Examples of double and triple integrals 

Double Integrals: 

1. Area under a Curve: 

Consider the region bounded by the curves y = x
2
 and y = 4 − x

2
, for 0 ≤ x ≤1. The area of 

this region can be calculated using a double integral: 

 

where R represents the region bounded by the curves. 

2. Volume Between Surfaces: 

Given two functions z = f(x, y) and z = g(x, y) over a region R in the xy-plane,  the volume 

between the surfaces and under the region can be computed as: 

 

 

Triple Integrals: 

1. Volume of a Solid Region: 
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Let's say we have a solid region bounded below by the plane z = 0, above by the plane z = 4 - 

x - 2y, and on the sides by the planes x = 0, y = 0, and a + 2y= 2. The volume of this solid can 

be calculated using a triple integral: 

 

where V represents the solid region. 

 

2. Mass of a Three-Dimensional Object: 

If we have a three-dimensional object with variable density p(x, y, z), the total mass M of the 

object can be calculated using:  

 

where V represents the volume of the object. 

 

These are just a few examples, but double and triple integrals have a wide range of 

applications in physics, engineering, economics, and various other fields for computing 

various properties of multivariable functions and regions in space. 

 

13.2 Change of Order of Integration 

Changing the order of integration is a crucial technique in multivariable calculus that allows 

for simplification and more efficient computation of double and triple integrals. The 

motivation behind changing the order of integration primarily stems from the desire to 

convert the given integral into a form that is easier to evaluate. This can involve converting 

from an integral with respect to one variable first to one with respect to another variable first, 

or from an iterated integral in one order to another order. 

 

Techniques for changing the order of integration in double and triple integrals 

In double and triple integrals, there are several techniques for changing the order of 

integration: 

1. Fubini's Theorem: This theorem states that if the function being integrated is 

continuous on a rectangle (or a rectangular solid in the case of triple integrals), then 

the order of integration can be changed without affecting the value of the integral. 
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2. Geometric Considerations: Understanding the geometric interpretation of the 

integral and the region of integration can guide the choice of the order of integration. 

For example, if the region of integration is more naturally described in terms of one 

variable before another, it may be beneficial to change the order accordingly. 

3. Symmetry: Exploiting symmetry can often simplify the integration process. 

Sometimes, changing the order of integration can make symmetry more apparent and 

lead to easier evaluations. 

4. Polar, Cylindrical, or Spherical Coordinates: For integrals involving circular, 

cylindrical, or spherical symmetry, it is often advantageous to switch to polar, 

cylindrical, or spherical coordinates, respectively. This change of variables can 

simplify the integral and make changing the order of integration more straightforward. 

 

Geometric interpretation of changing the order of integration 

The geometric interpretation of changing the order of integration involves visualizing how 

the region of integration is projected onto different coordinate planes or dimensions. By 

changing the order of integration, you essentially rearrange the process of slicing and 

summing over the region, which can lead to a more manageable integral. Geometrically, this 

corresponds to reorienting the axes or changing the direction of integration to better align 

with the shape and symmetry of the region being integrated over. 

 

13.3 Applications of Multiple Integrals 

Multiple integrals have various applications in mathematics and physics, as you've listed, but 

they are also widely used in engineering, economics, and even biology.  

Finding volume, mass, and center of mass using multiple integrals, Calculation of moments 

of inertia 

Here are some additional applications: 

1. Engineering Design and Analysis: Engineers often use multiple integrals to calculate 

various properties of objects and systems. For example, they might use double 

integrals to find the area of irregularly shaped regions or triple integrals to determine 

the volume of complex three-dimensional structures. In structural engineering, 

multiple integrals are used to analyze stress distributions in materials. 

2. Electromagnetism: In physics, multiple integrals are used extensively in the study of 

electromagnetism. For instance, in calculating electric and magnetic fields generated 
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by charged or current-carrying objects, engineers and physicists rely on multiple 

integrals over space to model and predict these fields accurately. 

3. Fluid Dynamics: Multiple integrals are crucial in fluid dynamics for determining 

properties such as fluid flow rate, pressure distribution, and fluid forces acting on 

solid surfaces. Engineers use these principles in designing aerodynamic shapes for 

aircraft, optimizing hydraulic systems, and understanding natural phenomena like 

ocean currents. 

4. Economics and Finance: In economics, multiple integrals are used in analyzing 

consumer and producer surplus, calculating total revenue and profit functions, and 

determining equilibrium prices and quantities in complex market models. In finance, 

they are employed in option pricing models and risk management techniques. 

5. Geography and GIS: Geographic Information Systems (GIS) utilize multiple 

integrals for spatial analysis, such as calculating the area covered by a particular land-

use type, estimating population density within specific regions, or determining 

optimal routes for transportation networks. 

6. Quantum Mechanics: In quantum mechanics, multiple integrals appear in the 

calculation of probabilities of various outcomes of particle interactions, the 

determination of energy eigenvalues and Eigenfunctions of quantum systems, and the 

calculation of expectation values of physical observables. 

7. Biology and Medicine: Multiple integrals are used in modeling biological systems, 

such as the distribution of substances within tissues, the flow of fluids within blood 

vessels, and the diffusion of chemicals in cellular environments. In medical imaging, 

they play a crucial role in reconstructing three-dimensional images from two-

dimensional scans. 

8. Computer Graphics and Animation: In computer graphics, multiple integrals are 

used for rendering three-dimensional scenes, calculating lighting and shading effects, 

and simulating realistic physical phenomena like fluid dynamics and cloth motion. 

 

These are just a few examples of the broad range of applications of multiple integrals across 

various fields. They provide powerful mathematical tools for modeling and solving complex 

real-world problems. 
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13.4 Summary 

1. Multiple Integrals: 

Definition: Multiple integrals extend the concept of integration to functions of multiple 

variables. Instead of integrating over a single interval, region, or volume, multiple integrals 

involve integrating over higher-dimensional regions, such as surfaces or volumes in two or 

three dimensions. 

• Types: 

• Double Integrals: Integrals over a region in the plane, where the integrand is a function of 

two variables. 

Triple Integrals: Integrals over a region in three-dimensional space, where the integrand is a 

function of three variables. 

• Higher-order Integrals: Integrals over regions in higher-dimensional spaces, extending the 

concept to functions of four or more variables. 

Applications: Multiple integrals are used extensively in physics, engineering, economics, and 

other fields to calculate quantities such as mass, volume, density, moment of inertia, 

probability, and more. 

2. Change of Order of Integration: 

Definition: Change of order of integration refers to the process of rearranging the order in 

which integrals are evaluated when performing multiple integrals. 

• Benefits: Changing the order of integration can simplify the evaluation of multiple integrals, 

making them easier to compute or leading to alternative representations. 

Conditions: Changing the order of integration is valid under certain conditions, such as when 

the region of integration is simple or when the integrand is well-behaved. 

• Techniques: 

For double integrals, changing the order often involves converting from Cartesian coordinates 

to polar coordinates or vice versa. 

For triple integrals, changing the order may involve rearranging the order of integration with 

respect to the three variables or using cylindrical or spherical coordinates. 

 

13.5 Keywords 

 Integration 
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 Integration by Parts 

 Multiple Integrals 

 Change of Order of Integration 

 

13.6 Self – Assessment Questions 

 

1. What is a multiple integral? 

2. How is a double integral different from a single integral? 

3. What is the interpretation of a triple integral? 

4. When do we use iterated integrals for multiple integrals? 

5. What does the order of integration refer to? 

6. Under what conditions can you change the order of integration? 

7. What is Fubini's theorem? 

8. How does changing the order of integration affect the limits of integration? 

9. Can you interchange the limits of integration in multiple integrals? 

10. What are some common applications of multiple integrals and changing the order of 

integration in real-world problems? 

 

 

13.7 Case Study  

1. Assume that the charge density ρ(x,y) in a two-dimensional region is changeable. 

This is known as the electric charge distribution. The entire region must be 

integrated over ρ(x,y) in order to determine the overall charge within the region. 

Explain the double integral setup for this calculation, as well as any situations in 

which reversing the integration order could make the work easier. 

2. Heat Distribution in a Plate: Let us consider a thin metal plate that has an uneven 

distribution of heat. T(x,y) gives the temperature of the plate at any given point 

(x,y). Integrating T(x,y) throughout the whole plate yields the total heat content. In 

order to determine the total heat content, explain how the double integral would be 

built up and talk about the possible advantages of varying the sequence of 

integration. 
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CHAPTER -14 

Beta and Gamma Functions 

Learning Objectives: 

 Define what Beta and Gamma functions are and their significance in mathematics, 

particularly in calculus, analysis, and probability. 

 Understand how to derive and apply various integral representations and series 

expansions for Beta and Gamma functions. 

 Apply Beta and Gamma functions to solve problems in calculus, probability, 

statistics, and physics. 

Structure: 

14.1 Introduction to Beta and Gamma Functions 

14.2 Evaluating Integrals with Beta and Gamma Functions 

14.3 Summary 

14.4 Keywords 

14.5 Self-Assessment Questions 

14.6 Case Study 

14.7 References 

14.1 Introduction to Beta and Gamma Functions 

Definition and properties of the gamma function: 

 The gamma function, denoted by Γ(x), is defined for all complex numbers except non-

positive integers. It extends the factorial function to non-integer arguments. 

 Its properties include: 

 

Definition and properties of the beta function: 

The beta function, denoted by B(p, q), is defined for positive real numbers p and q. It is 

closely related to the gamma function and is expressed as: 

 

Relationship between the gamma and beta functions: 

The relationship between the gamma and beta functions is fundamental in mathematical 

analysis and arises from their definitions and properties. The beta function, denoted as B(p,q), 
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is defined in terms of the gamma function (x), and this interconnection provides a deeper 

understanding of both functions. 

1. Beta Function in Terms of Gamma Function: 

The beta function is expressed in terms of the gamma function as follows: 

 

2. Reciprocal Relation: 

There exists a reciprocal relation between the gamma function and the beta function: 

 

3. Symmetry Property: 

The beta function exhibits a symmetry property: 

B(p,q) = B(q,p) 

This property implies that the beta function is symmetric with respect to its parameters p and 

q. 

 

4. Relation to Integral Representation: 

The beta function can be represented as an integral involving the gamma function:  

 

This representation highlights the integral nature of the beta function and its connection to the 

gamma function. 

5. Product Representation: 

The beta function can be represented as a product of two gamma functions: 

 

This product representation emphasizes the relationship between the beta and gamma 

functions and facilitates various mathematical manipulations. 

 

14.2 Evaluating Integrals with Beta and Gamma Functions 

Integrals involving gamma and beta functions often arise in various areas of mathematics and 

physics, particularly in the context of probability theory, statistics, and mathematical physics. 

These functions have properties that make them particularly useful for evaluating certain 
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types of integrals. Here's a brief overview of the gamma and beta functions and some 

techniques for using them to evaluate integrals: 

1. Gamma Function ( (x)): The gamma function is defined for all complex numbers except 

for the non-positive integers. It is denoted by  (x) and is defined as: 

 

Some key properties of the gamma function include: 

 

 

2. Beta Function (B(x, y)): The beta function is also defined for positive real numbers x 

and y. It is denoted by B(x, y) and is defined as: 

 

Some properties of the beta function include: 

 

Techniques for Evaluating Integrals using Gamma and Beta Functions: 

1. Substitution: Sometimes, a clever substitution involving gamma or beta functions 

can transform an integral into a form where these functions can be directly applied. 

For example, using substitution to rewrite the integral in terms of the gamma or beta 

function. 

2. Integration by Parts: Integration by parts can be used in combination with properties 

of gamma and beta functions to simplify integrals. This technique often involves 

choosing appropriate functions to differentiate and integrate. 

3. Using Known Results: Sometimes, it's possible to express the integrand in terms of 

known functions, and then use properties of those functions to evaluate the integral. 

For instance, expressing the integrand in terms of trigonometric or exponential 

functions. 

4. Special Functions: Gamma and beta functions are special functions that have well-

defined properties, which can be exploited to simplify integrals. For example, using 

properties like the duplication formula or Euler's reflection formula. 
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Applications to Various Problems: 

1. Probability Distributions: Many probability distributions, such as the gamma 

distribution, beta distribution, and chi-square distribution, involve gamma and beta 

functions in their probability density functions and cumulative distribution functions. 

2. Mathematical Physics: Integrals involving gamma and beta functions often arise in 

problems related to quantum mechanics, statistical mechanics, and electromagnetic 

theory. 

3. Engineering Applications: These functions find applications in various engineering 

fields, including signal processing, control theory, and communication theory. 

4. Number Theory: Gamma and beta functions also have connections to number theory, 

particularly through their relation to combinatorial coefficients and special sequences. 

 

Application in Solving Differential Equations:  

Beta and gamma functions often appear in the solutions of differential equations, particularly 

in problems involving integral transforms, such as Laplace transforms and Fourier 

transforms. For instance, when solving differential equations involving linear operators, 

gamma and beta functions can serve as building blocks for finding solutions through integral 

representations. 

 

14.3 Summary 

Both the Beta and Gamma functions have widespread applications in various branches of 

mathematics, including calculus, probability theory, statistics, and mathematical physics. 

They are foundational tools for solving complex problems involving integration, 

combinatorics, and continuous distributions. 

 

14.4 Keywords 

 Beta and Gamma Functions 

 Differential Equations 

 

14.5 Self – Assessment Questions 

1. What is the Beta function? 

2. What is the Gamma function? 

3. How are the Beta and Gamma functions related? 
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4. What is the definition of the Beta function in terms of an integral? 

5. How is the Gamma function defined for positive real numbers? 

6. What are the properties of the Beta function? 

7. What are the properties of the Gamma function? 

8. Can you express the factorial function using the Gamma function? 

9. How are the Beta and Gamma functions used in calculus and mathematical analysis? 

10. What are some applications of the Beta and Gamma functions in various fields of science 

and engineering? 

 

14.6 Case Study  

Goods with a chance x of defects are produced at a production plant. The plant manager 

anticipates that this likelihood will be 4% even if she is unsure about x based on prior 

experience. She also adds a standard deviation of 2% to her estimate of 4% in order to 

quantify her uncertainty regarding x. The manager, after conferring with a statistician, 

determines to model her uncertainty about x using a Beta distribution. In order to match her 

priors regarding the anticipated value and the standard deviation of x, how should she adjust 

the two distribution parameters? 
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